期刊文献+

Hollow Porous SiO_2 Nanocubes with Enhanced Lithium Storage Properties

Hollow Porous SiO_2 Nanocubes with Enhanced Lithium Storage Properties
下载PDF
导出
摘要 The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2 nanocubes exhibited a reversible capacity of 919 mAh/g over 30 cycles. The excellent property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery, fast transportation of Li ions in hollow porous SiO2 nanocubes is preferred to form Li2O and Si, contributing to the high reversible capacity. The hollow porous SiO2 nanocubes have great potential applications for Li-ion batteries due to their remarkable electrochemical performance and low cost. The high theoretical capacity and low discharge potential of silicon have attracted much attention on Si-based anodes. Herein, hollow porous SiO2 nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2 nanocubes exhibited a reversible capacity of 919 mAh/g over 30 cycles. The excellent property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery, fast transportation of Li ions in hollow porous SiO2 nanocubes is preferred to form Li2O and Si, contributing to the high reversible capacity. The hollow porous SiO2 nanocubes have great potential applications for Li-ion batteries due to their remarkable electrochemical performance and low cost.
出处 《矿物学报》 CAS CSCD 北大核心 2013年第S1期69-69,共1页 Acta Mineralogica Sinica
关键词 HOLLOW POROUS SIO2 LI-ION battery ANODE hollow porous SiO2 li-ion battery anode
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部