期刊文献+

PHASE PORTRAITS OF Z5-EQUIVARIANT QUARTIC HAMILTONIAN SYSTEM

PHASE PORTRAITS OF Z5-EQUIVARIANT QUARTIC HAMILTONIAN SYSTEM
原文传递
导出
摘要 In this paper,a quartic Hamiltonian system with Z5-equivariant property is considered.Using the methods of qualitative analysis,bifurcations of the above system are analyzed,the phase portraits of the system are classified and representative orbits are shown by Maple software. In this paper,a quartic Hamiltonian system with Z5-equivariant property is considered.Using the methods of qualitative analysis,bifurcations of the above system are analyzed,the phase portraits of the system are classified and representative orbits are shown by Maple software.
作者 Bin Luo Yuhai Wu
机构地区 Dept.of Math.
出处 《Annals of Differential Equations》 2013年第4期438-442,共5页 微分方程年刊(英文版)
关键词 quartic Hamiltonian system qualitative analysis phase portraits BIFURCATIONS quartic Hamiltonian system qualitative analysis phase portraits bifurcations
  • 相关文献

参考文献3

  • 1范兴宇,黄文韬,陈爱永.一类四次哈密尔顿系统的极限环数[J].中山大学学报(自然科学版),2012,51(2):35-39. 被引量:2
  • 2Yanmei Li.Phase portraits of a class of Z3-invariant quiatic Hamiltonian system[].Journal of Yunnan Normal University.2003
  • 3Jibin Li,Fenquan Chen.Chaology,Method of Melnikov and Its New Development[]..2012

二级参考文献11

  • 1CHEN F,LI C,LIBRE J,et al.A unified proof on theweak Hilbert 16th problem for n=2[J].J Diff Equa,2006,221(2):309-342.
  • 2CHRISTOPHER C,LI C.Limit cycles of differential e-quations,advanced courses in mathematics[M].CRMBarcelona Birkhuser Verlag,Basel,2007.
  • 3ECALLE J.Introduction aux functions analysables etpreuve constructive de la conjecture de Dulac[M].Her-mann,Pairs,1992.
  • 4ROUSSARIE R.Bifurcation of planar vector fields andHilbert's sixteenth problem,progress in mathematics[M].Birkhuser Verlag,Basel,1998.
  • 5DUMORTIER F,LI C.Perturbations from an ellipticHamilton of degree of four:(I)saddle loop and two sad-dle cycle[J].J Diff Equa,2001,176(1):14-157.
  • 6DUMORTIER F,LI C.Perturbations from an ellipticHamilton of degree of four:(II)cuspidal loop[J].J DiffEqua,2001,175(2):209-243.
  • 7DUMORTIER F,LI C.Perturbations from an ellipticHamilton of degree of four:(III)global center[J].JDiff Equa,2003,188(2):473-511.
  • 8DUMORTIER F,LI C.Perturbations from an ellipticHamilton of degree of four:(IV)figure eight-loop[J].J Diff Equa,2003,188(2):512-554.
  • 9ZHOU H X,XU W,LI S,et al.On the number of limitcycles of a cubic polynomials Hamiltonian system underquintic perturbation[J].Applied Mathematic and Com-putation,2007,190(1):490-499.
  • 10WU C Q,XIA Y H.The number of limit cycle of cubicHamiltonian system with perturbation[J].Nonlinear A-nalysis:Real World Application,2006,7:943-949.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部