摘要
Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.
Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.