摘要
Adaptive wing can significantly enhance aircraft aerodynamic performance, which refers to aerodynamic and structural opti-mization designs. This paper introduces a two-step approach to solve the interrelated problems of the adaptive leading edge. In the first step, the procedure of airfoil optimization is carried out with an initial configuration of NACA 0006. On the basis of the combination of design of experiment (DOE), response surface method (RSM) and genetic algorithm (GA), an adaptive air-foil can be obtained whose lift-to-drag ratio is larger than the baseline airfoil's at the given angle of attack and subsonic speed.The next step is to design a compliant structure to achieve the target airfoil shape, which is the optimization result of the previous step. In order to minimize the deviation of the deformed shape from the target shape, the load path representation topology method is presented. This method is developed by way of GA, with size and shape optimization incorporated in it simul-taneously. Finally, a comparison study with the Solid Isotropic Material with Penalization (SIMP) method in Altair OptiStruct is conducted, and the results demonstrate the validity and effectiveness of the proposed approach.
Adaptive wing can significantly enhance aircraft aerodynamic performance, which refers to aerodynamic and structural opti-mization designs. This paper introduces a two-step approach to solve the interrelated problems of the adaptive leading edge. In the first step, the procedure of airfoil optimization is carried out with an initial configuration of NACA 0006. On the basis of the combination of design of experiment (DOE), response surface method (RSM) and genetic algorithm (GA), an adaptive air-foil can be obtained whose lift-to-drag ratio is larger than the baseline airfoil’s at the given angle of attack and subsonic speed.The next step is to design a compliant structure to achieve the target airfoil shape, which is the optimization result of the previous step. In order to minimize the deviation of the deformed shape from the target shape, the load path representation topology method is presented. This method is developed by way of GA, with size and shape optimization incorporated in it simul-taneously. Finally, a comparison study with the Solid Isotropic Material with Penalization (SIMP) method in Altair OptiStruct is conducted, and the results demonstrate the validity and effectiveness of the proposed approach.
基金
supported by the Aeronautical Science Foundation of China(Grant No.2012ZA52001)
the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20123218120005)