期刊文献+

贫铬区演化对奥氏体不锈钢晶间腐蚀影响 被引量:11

Effect of Cr-depleted zone evolution on intergranular corrosion of austenitic stainless steel
原文传递
导出
摘要 采用电化学动电位再活化(EPR)法测定了950℃固溶处理的304不锈钢敏化温度-时间-敏化(TTS)曲线,观察了敏化处理的晶间腐蚀组织形貌。建立了一维304奥氏体不锈钢敏化的物理模型,模拟了敏化过程中晶界区域富铬碳化物沉淀析出长大、相界面的溶质热力学、相界迁移动力学和基体中溶质Cr、Ni浓度分布。结果表明:贫铬区中的Cr浓度变化和有效贫铬区宽度两个参量能体现晶界腐蚀的程度,这与敏化处理的晶间腐蚀形貌观察一致;溶质Ni富集及扩散不仅改变贫铬区中溶质Fe、Cr浓度分布,而且改变富铬碳化物成分组成以及其长大速率。敏化处理时贫铬区中溶质碳化学势先升高后缓慢下降,溶质铬化学势变化与之相反;基于相界面迁移一致性的富铬碳化物长大基本符合Zener抛物线增长趋势。 Temperature-time-sensitization(TTS) curves of he 304 austenitic stainless steel were studied by means of electrochemical potentiodynamic reactivation(EPR) after solid-solution treatment at 950 ℃,the corresponding micro intergranular corrosion morphology was observed. The physical model was established based on the solutes thermodynamics,solutes flow equation in phase interface and solutes diffusion equation in the bulk,the one dimensional sensitization process of 304 austenitic stainless steel was simulated. The results show that the intergranular corrosion is determined by Cr solute concentration profiles in Cr-depleted zone,and influenced by the width of effective Cr-depleted zone,the change combination of two parameters agrees with experimental results; Ni-enriched concentration and its diffusion will change Fe,Cr solutes concentration profiles in Cr-depleted zone and(CrFe) C(6/23) carbide components and carbide precipitation growth rate. The carbon chemical potential in the bulk near the phase interface increases in initial sensitization stage then decreased slowly,the Cr chemical potential changes oppositely. Based on the phase interface migration consistency,(CrFe) C(6/23) carbide interfacial migration agrees with Zener parabolic growth trend.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2013年第S2期148-153,共6页 Transactions of Materials and Heat Treatment
关键词 贫铬区 敏化 晶间腐蚀 EPR法 模拟 Cr-depleted zone sensitization intergranular corrosion EPR method simulation
  • 相关文献

参考文献14

  • 1李神速.双回路EPR法测定奥氏体不锈钢的敏化[J].腐蚀科学与防护技术,2000,12(5):288-291. 被引量:23
  • 2金维松,郎宇平,荣凡,孙力军.EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究[J].中国腐蚀与防护学报,2007,27(1):54-59. 被引量:52
  • 3?ihal,V. Intergranular Corrosion of Steels and Alloys . 1984
  • 4A. Van der Ven,L. Delaey.Models for precipitate growth during the γ → α + γ transformation in FeC and FeCM alloys[J].Progress in Materials Science.1996(3)
  • 5G.S. Was,R.M. Kruger.A thermodynamic and kinetic basis for understanding chromium depletion in Ni-Cr-Fe alloys[].Acta Metallurgica.1985
  • 6Sourmail, T.,Too, C.H.,Bhadeshia, H.K.D.H.Sensitisation and evolution of chromium-depleted zones in Fe-Cr-Ni-C systems[].ISIJ International.2003
  • 7Hiroshi Arai,Seiichi Takeda,Yoshiaki Arata.Theoretical analysis of susceptibility of ferritic stainless steel to intergranular corrosion caused by welding[].Transactions of JWRI.1987
  • 8李长荣,张维敬,张文奇.奥氏体不锈钢敏化动力学过程模拟[J].中国腐蚀与防护学报,1989,9(4):249-260. 被引量:3
  • 9Anders Bj?rbo,Mats H?ttestrand.Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—an experimental and theoretical study[J].Metallurgical and Materials Transactions A.2001(1)
  • 10William E. Mayo.Predicting IGSCC/IGA susceptibility of Ni-Cr-Fe alloys by modeling of grain boundary chromium depletion[J].Materials Science & Engineering A.1997(1)

二级参考文献23

  • 1Chen Q,Jeppsson J ,Agren J. Analytical treatment of diffusion during precipitate growth in muhicomponent systems[ J]. Acta Mater,2008,56:1890 -1896.
  • 2Bjarbo A,Hattesterand M. Complex carbide growth, dissolution, and coarsening in a modified 12pct chromium steel-an experimental and theoretical study [ J ]. Metall Mater Trans A,2001,32 : 19 - 27.
  • 3Perez M ,Dumont M ,Acevedo-Reyes D. Implementation of classical nucleation and growth theories for precipitation[ J ]. Acta Mater,2008,56: 2119 -2132.
  • 4Fujita N, Bhadeshia H K D H, Kikuchi M. Modeling M6 C precipitation in niobium-alloyed ferritic stainless steel[ J ] , M etall Mater Trans A ,2002,33: 3339 - 3347.
  • 5Cao W, Chen S L, Zhang F, et al. PANDAT software with Pan Engine, panoptimizer and panprecipitation for multi-component phase diagram calculation and materials property simulation[ J]. Calphad ,2009,33 (2) : 328 -342.
  • 6Miller M K, Simth G D W. Atom Probe Microanalysis:Principles and Applications to Materials Problems[ M ]. Beijing: Peking University Press, 1993.
  • 7Robson J D. Modeling the evolution of particle size distribution during nucleation,growth and coarsening[J]. Mater Sci Technol,2004,20: 441 -448.
  • 8Leitner H, Bischof M, Clemens H, et. al. Precipitation behaviour of a complex steel[ J]. Adv Eng Mater,2006,8 (11 ) : 1066 - 1077.
  • 9Xiao S Q, Haasen P. HREM investigation of homogeneous decomposition in a N i-12 at% Al alloy [J].Acta Metal Mater, 1991,39 (4) : 651 -659.
  • 10Pearson W B. A Handbook of Lattice Spacings and Structures of Metals[ M ]. Oxford: Pergamon Press, 1958.

共引文献71

同被引文献85

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部