期刊文献+

异构传感器网络中汇聚节点位置优化路由算法

Routing algorithm based on location optimization of sink node in hybrid wireless sensor networks
下载PDF
导出
摘要 在异构无线传感器网络模型下,针对采集节点发送数据能量消耗过高及路由时分组丢失率过大等情况,对数据汇聚节点的位置优化及路由进行了研究,提出了移动汇聚节点位置优化路由算法(MLOYIH)。先根据蚁群算法的原理对移动节点与静态节点进行分组,再在组内寻找适合的位置放置汇聚节点,最后根据供电情况,选择合适的跳算进行路由。经过仿真实验与性能分析表明,MLOYIH算法与传统算法比较,能量消耗降低到64%,分组丢失率不高于3%。 The data acquisition nodes in hybrid wireless sensor network usually suffer high energy consumption of data transmission and high ratio of packet loss. This issue is closely related to the position of data aggregation nodes(sink nodes) and can be improved by optimizing the location of these nodes. It was adopted in the routing algorithm based on location optimization of mobile sink nodes(MLOYIH). In MLOYIH, ant colony algorithm was used to divide the mobile nodes and static nodes into groups and then the suitable positions of the aggregation nodes were determined within each group. Then the suitable networking routing was established according to the power supply of sensor nodes. Simulation shows that MLOYIH algorithm has a lower energy consumption with a reduction of 64% compared with the traditional algorithms, and the ratio of packet loss is less than 3%.
出处 《通信学报》 EI CSCD 北大核心 2013年第S1期268-275,共8页 Journal on Communications
基金 重庆市2013年教育科学规划基金资助项目 湖南省科技厅计划基金资助项目(2013GK3082)~~
关键词 异构传感器网络 移动节点 位置优化 路由 hybrid wireless sensor networks mobile node optimal location routing
  • 相关文献

参考文献4

  • 1路秀英,崔兴凯,霍新丽.求解多目标资源分配问题的改进蚁群优化算法[J].微电子学与计算机,2011,28(10):87-90. 被引量:4
  • 2Jianping Deng,Minqiang Wang,Xiaohui Song,Yanhua Shi,Xiangyu Zhang.CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays[J].Journal of Colloid And Interface Science.2012(1)
  • 3Paolo Medagliani,Jérémie Leguay,Gianluigi Ferrari,Vincent Gay,Mario Lopez-Ramos.Energy-efficient mobile target detection in Wireless Sensor Networks with random node deployment and partial coverage[J].Pervasive and Mobile Computing.2011(3)
  • 4Habib M. Ammari.On the problem of k -coverage in mission-oriented mobile wireless sensor networks[J].Computer Networks.2012(7)

二级参考文献11

  • 1Hou Y C, Chang Y H. A new efficient encoding mode of genetic algorithms for the generalized plant allocation problem [J]. Journal of Information Science and Engineering, 2004(20) : 1019- 1034.
  • 2Matthias Ehrgott, Kathrin Klamroth, Christian Schwehm. An MCDM approach to port{olio optimization [J]. European Journal of Operational Research, 2004, 155 (3) : 752-770.
  • 3Dai Y S, Xie M, Poh K L, et al. Optimal testing-resource allocation with genetic algorithm for modular software systems [J]. Journal of Systems and Software, 2003(66):47-55.
  • 4Osman M S, Abo Sinna M A, Mousa A A. An effective genetic algorithm approach to multi-objective resource allocation problems [J]. Applied Mathematics and Computation, 2005(163) :755-768.
  • 5Lin Chiming, Gen Mitsuo. Multi-objective resource allocation problem by multistage decision-based hybrid genetic algorithm [J]. Applied Mathematics and Computation, 2007(187) :574-583.
  • 6Shyu S J, Lin B M T, YIN P Y. Application of ant colony optimization for nowait flow shop scheduling problem to minimize the total completion time[J]. Computer and Industrial Engineering, 2004(47):181-193.
  • 7Shyu S J, Yin P Y, Lin B M T, et al. An ant colony optimization algorithm for the minimum weight vertex cover problem[J]. Annals of Operations Research, 2004 (131) :283-304.
  • 8Yin P Y. Ant colony search algorithm for optimal polygonal approximation of plane curves [J]. Pattern Recognition, 2003(36) : 1783-1797.
  • 9Solimanpur M, Vrat P, Shankar R. Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing[J]. European Journal of Operational Research, 2004(157) :592-606.
  • 10Maniezzo V. Exact and approximate nondeterrninistie tree- search procedures for the quadratic assignment problem [J]. INFORMS Journal on Computing, 1999 (11) :358-369.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部