期刊文献+

高校误判垃圾邮件自动召回系统的研究与实现 被引量:1

Effect of cold-rolling cladding on microstructure and properties of composite aluminum alloy foil
下载PDF
导出
摘要 垃圾邮件的误判问题一直是反垃圾邮件领域中未能得到根本解决的难点。基于清华大学邮箱系统及反垃圾邮件网关系统进行了一整年的部署和实验(2011年9月至2012年10月),通过用户对可疑垃圾邮件点击召回的历史行为进行分析,并采用对其感兴趣的垃圾邮件进行文本相似度计算以及关键参数预测的方法来智能化预测用户对当前某一封垃圾邮件的感兴趣程度,即基于用户主观的选择和体验来帮助用户自动召回其可能感兴趣、然而却被反垃圾邮件网关误判的垃圾邮件,解决了传统过滤方法无法杜绝误判的问题。 The misjudgement of spam has always been the difficulty in the anti-spam area. Experiments based on Tsinghua university E-mail systems and anti-spam gateway system(Sep,2011–Oct,2012) were deployed and made, analyzing the history of recalling spam behavior of mail users, and using spam text similarity calculation and intelligent key parameters prediction method to predict the user's interest in the current pending spam, which can help users automatically recall their potential interested spams which were misjudged, based on the users' subjective choices and experience, solving the problem that cannot be eliminated by traditional filtering methods.
出处 《通信学报》 EI CSCD 北大核心 2013年第S2期121-132,共12页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2009CB320505)~~
关键词 隐性索引模型 垃圾邮件 自动召回 向量空间模型 神经网络集成 KNN 贝叶斯 LSI spam automatic recall VSM neural network ensemble KNN Bayesian
  • 相关文献

参考文献2

  • 1Christos H. Papadimitriou,Prabhakar Raghavan,Hisao Tamaki,Santosh Vempala.Latent Semantic Indexing: A Probabilistic Analysis[J].Journal of Computer and System Sciences.2000(2)
  • 2Thomas K. Landauer,Peter W. Foltz,Darrell Laham.An introduction to latent semantic analysis[J].Discourse Processes (-).1998(2-3)

同被引文献30

  • 1冯兵,李芝棠,花广路.基于灰度—梯度共生矩阵的图像型垃圾邮件识别方法[J].通信学报,2013,34(S2):1-4. 被引量:11
  • 2Biggio B,Fumera G,Pillai I,et al.A survey and experimental evaluation of image spam filtering techniques[J].Pattern Recognition Letters,2011,32(10):1436-1446.
  • 3Liu Qiao,Qin Zhiguang,Chen Hongrong,et al.Efficient modeling of spam images[C] //Proc of the 3rd International Symposium on Intelligent Information Technology and Security Informatics.[S.l.] :IEEE Press,2010:663-666.
  • 4Wang Zhe,Josephson W,Lyu Qin,et al.Filtering image spam with near-duplicate detection[C] // Proc of the 4th Conference on Email and Anti-Spam.2007:1-10.
  • 5Mehta B,Nangia S,Gupta M,et al.Detecting image spam using visual features and near duplicate detection[C] // Proc of the 17th International Conference on World Wide Web.2008:497-506.
  • 6Indyk P,Motwani R.Approximate nearest neighbor:towards removing the curse of dimensionality[C] //Proc of the 30th Annual ACM Symposium on Theory of Computing.1998:604-613.
  • 7PauleveL,Jegou H,Amsaleg L.Locality sensitive hashing:a comparison of hash function types and querying mechanisms[J].Pattern Recognition Letters,2010,31(11):1348-1358.
  • 8Gionis A,Indyk P,Motwani R.Similarity search in high dimensions via hashing[C] //Proc of the 25th International Conference on Very Large Data Bases.1999:1-19.
  • 9Dasgupta A,Kumar R,Sarlos T.Fast locality-sensitive hashing[C] //Proc of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2011:1073-1081.
  • 10Andoni A.Nearest neighbor search:the old,the new,and the impossible[D].Cambridge:MIT,2009.

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部