期刊文献+

TiB_2-C复合阴极中碱金属(K、Na)的渗透及其对阴极电解膨胀的影响(英文) 被引量:2

Alkali metals(K and Na) penetration and its effects on expansion of TiB_2-C composite cathode during aluminum electrolysis
下载PDF
导出
摘要 在不同电解条件下,研究纯KF熔体、纯NaF熔体及其复合电解质熔体中,碱金属(K、Na)在TiB2-C复合阴极中的渗透迁移行为及其引起的阴极电解膨胀。揭示影响阴极电解膨胀性能的主要因素,同时对阴极剖面进行元素微区分析。结果表明:在非极化以及不含铝的电解质熔体中,阴极不会发生膨胀;直接放电所生成的碱金属是造成阴极膨胀的主要因素,引起的阴极最大电解膨胀率可达20.40%;含钾电解质熔体中阴极的电解膨胀率远高于不含钾电解质熔体中阴极的电解膨胀率,最高超出35.13%;与纯钾盐相比,复合电解质对阴极的破坏作用降低;此外,无论是在极化条件还是在非极化条件下,含铝电解质熔体中阴极的电解膨胀率均大于不含铝电解质熔体中阴极的电解膨胀率;同时,在非极化条件下电解质熔体中加入铝后比极化条件下电解质熔体中加入铝后所引起的阴极电解膨胀的增加更为明显。 The behavior of alkali metals (K and Na) penetration in TiB2?C composite cathode and the induced electrolysis expansion under various conditions in KF melt, NaF melt and their composite melts were investigated. The most important influence factor on the electrolysis expansion properties of the cathode was revealed, and the elements micro-analysis of cathode profiles was performed. The results indicate that, under the condition of non-polarization and Al free, no electrolysis expansion occurs. The alkali metal produced by direct discharge reduction is the most important factor causing the electrolysis expansion, and the maximal expansion is 20.40%. Electrolysis expansion in electrolyte with K is higher than that in electrolyte without K, and the maximal excess magnitude is 35.13%. Compared with pure potassium salt, composite electrolyte has less destructive effects on the cathode. In addition, no matter under the condition of polarization or non-polarization, electrolysis expansion in electrolyte with Al is always greater than that in electrolyte without Al, and the increase amplitude of electrolysis expansion in non-polarization conditions with Al is significantly greater than that in polarization conditions with Al.
出处 《中国有色金属学会会刊:英文版》 CSCD 2013年第6期1847-1853,共7页 Transactions of Nonferrous Metals Society of China
基金 Project(2009BAE85B02)supported by the National Key Technology Program of China Project(QN1221)supported by the Science and Technology Funds of Xi'an University of Architecture and Technology,China
关键词 铝电解 碱金属 TiB2-C复合阴极 电解膨胀 aluminum electrolysis alkali metals K Na TiB2-C composite cathode electrolysis expansion
  • 相关文献

参考文献3

二级参考文献53

  • 1赖延清,王家伟.Na_3AlF_6-Al_2O_3体系低温电解研究现状评述[J].轻金属,2006(9):37-42. 被引量:4
  • 2王家伟,赖延清.X(K或Li)_3AlF_6-Al_2O_3体系低温电解研究现状评述[J].轻金属,2007(1):31-36. 被引量:7
  • 3JAMES W E, HALVOR K. Sustainability, climate change, and greenhouse gas emissions reduction: responsibility, key challenges, and opportunities for the aluminum industry[J]. JOM, 2008, 60(8): 25-31.
  • 4CILIANU M, PANAIT N. Evolution of the physico-chemieal properties of the electrolyte in industrial aluminium electrolysis cells[J]. UPB Scientific Bulletin: Chemistry and Materials Science, 2003, 65(3): 63-73.
  • 5GRJOTHEIM K, KVANDE H. Physico-chemical properties of low-melting baths in aluminium electrolysis[J]. Metall, 1985, 39(6): 510-513.
  • 6SLEPPY W C, COCHRAN C N. Bench scale electrolysis of aluminium in sodium fluoride-aluminium fluride melts below 900 ℃[C]// WARREN S P. Light Metals 1979. USA: TMS, 1979: 385-395.
  • 7JACOBS T B, BROOKS R. Electrolytic reduction of aluminum: United States, 5279715[P]. 1994.
  • 8GALASIU I, GALASIU R, THONSTAD J. Inert anodes for aluminium electrolysis[M]. Dusseldorf: Aluminium- Verlag, 2007: 23-24.
  • 9JAMES W E. The evolution of technology for light metals over the last 50 years: Al, Mg and Li[J]. JOM, 2007, 59(2): 30-38.
  • 10aRATVIK P A, STORE A, SOLHEIM A, TRYGVE F. The effect of current density on cathode expansion during start-up [C]// DAVID H D Y. Light Metals 2008. USA: TMS, 2008: 973-978.

共引文献11

同被引文献20

  • 1Oleg Kazak.Modeling of Vortex Flows in Direct Current (DC) Electric Arc Furnace with Different Bottom Electrode Positions[J]. Metallurgical and Materials Transactions B . 2013 (5)
  • 2Norio Iwashita,Hiroshi Imagawa,Wataru Nishiumi.Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products[J]. Carbon . 2013
  • 3L. Chauke,A.M. Garbers-Craig.Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data[J]. Carbon . 2013
  • 4Chuan-li QIN,Xing LU,Ge-ping YIN,Xu-duo BAI,Zheng JIN.Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications[J]. Transactions of Nonferrous Metals Society of China . 2009
  • 5Yo-Rhin Rhim,Dajie Zhang,D. Howard Fairbrother,Kevin A. Wepasnick,Kenneth J. Livi,Robert J. Bodnar,Dennis C. Nagle.Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature[J]. Carbon . 2009 (4)
  • 6P. A. Eidem,M. Runde,M. Tangstad,J. A. Bakken,Z. Y. Zhou,A. B. Yu.Effect of Contact Resistance on Bulk Resistivity of Dry Coke Beds[J]. Metallurgical and Materials Transactions B . 2009 (3)
  • 7Hiltmann F,Patel P,Hyland M.Influence of internal cathode structure on behavior during electrolysis part I:Properties of graphitic and graphitized material. Light Metals 2005 . 2005
  • 8Wagner, P.,O’Rourke, J.A.,Armstrong, P.E.POROSITY EFFECTS IN POLYCRYSTALLINE GRAPHITE. Journal of the American Ceramic Society . 1972
  • 9S Larsen,X Liao,H Gran,S Madshus,J Johansen.Development of High Density Graphitized Cathode Blocks for Aluminium Electrolysis Cells. Journal of Light Metals . 2010
  • 10M. Monajjemi,H. Baheri,F. Mollaamin.A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given curve. Journal of Structural Chemistry . 2011

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部