摘要
Nature at the lab level in biology and chemistry can be described by the application of quantum mechanics.In many cases,a reasonable approximation to quantum mechanics is classical mechanics realized through Newton's equations of motion.Dr.Pedersen began his career using quantum mechanics to describe the properties of small molecular complexes that could serve as models for biochemical systems.To describe large molecular systems required a drop-back to classical means and this led surprisingly to a major improvement in the classical treatment of electrostatics for all molecules,not just biological molecules.Recent work has involved the application of quantum mechanics for the putative active sites of enzymes to gain greater insight into the key steps in enzyme catalysis.
Nature at the lab level in biology and chemistry can be described by the application of quantum mechanics.In many cases,a reasonable approximation to quantum mechanics is classical mechanics realized through Newton's equations of motion.Dr.Pedersen began his career using quantum mechanics to describe the properties of small molecular complexes that could serve as models for biochemical systems.To describe large molecular systems required a drop-back to classical means and this led surprisingly to a major improvement in the classical treatment of electrostatics for all molecules,not just biological molecules.Recent work has involved the application of quantum mechanics for the putative active sites of enzymes to gain greater insight into the key steps in enzyme catalysis.
基金
Supported by The National Institutes of Health (HL-006350)
National Science Foundation (FRG DMR 0804549)