摘要
AIM:To test the growth-promoting activity of the polyamine spermidine bound to various polymeric compounds in supramolecular complexes.METHODS:A thiazolyl blue cell viability assay was used to determine the growth-promoting potency of spermidine-supramolecular complexes in a human skin fibroblast cell line exposed to spermidine and different spermidine-supramolecular complexes that were obtained by combining spermidine and polyanionic polymers or cyclodextrin.Reconstituted human vaginal epithelium was exposed to a specific spermidinesupramolecular complex,i.e.,spermidine-hyaluronan(HA)50,and cell proliferation was determined by Ki-67immunohistochemical detection.Transepithelial electrical resistance and histological analysis were also performed on reconstituted human vaginal epithelium to assess tissue integrity.RESULTS:The effect of spermidine and spermidinesupramolecular complexes was first tested in skin fi-broblasts.Spermidine displayed a reverse dose-related mode of activity with mmol/L growth inhibition,whereas 30%stimulation over basal levels was detected at mol/L and nmol/L levels.Novel spermidine-supramolecular complexes that formed between spermidine and polyanionic polymers,such as HA,alginate,and polymaleate,were then tested at variable spermidine concentrations and a fixed polymer level(0.1%w/v).Spermidine-supramolecular complexes stimulated the cell growth rate throughout the entire concentration range with maximal potency(up to 80%)at sub-mol/L levels.Similar results were obtained with spermidine-(-cyclodextrin),another type of spermidine-supramolecular complex.Moreover,the increased expression of Ki-67 in the reconstituted human vaginal epithelium exposed to spermidine-HA 50 showed that the mode of action behind the spermidine-supramolecular complexes was increased cell proliferation.Functional and morphological assessments of reconstituted human vaginal epithelium integrity did not show significant alterations after exposure to spermidine-HA,thus supporting its safety.CONCLUSION:Spermidine found in spermidine-supramolecular complexes displayed potentiated regenerative effects.Safety data on reconstituted human vaginal epithelium suggested that assessing spermidinesupramolecular complex efficacy in atrophic disorders is justified.
AIM:To test the growth-promoting activity of the polyamine spermidine bound to various polymeric compounds in supramolecular complexes.METHODS:A thiazolyl blue cell viability assay was used to determine the growth-promoting potency of spermidine-supramolecular complexes in a human skin fibroblast cell line exposed to spermidine and different spermidine-supramolecular complexes that were obtained by combining spermidine and polyanionic polymers or cyclodextrin.Reconstituted human vaginal epithelium was exposed to a specific spermidinesupramolecular complex,i.e.,spermidine-hyaluronan(HA)50,and cell proliferation was determined by Ki-67immunohistochemical detection.Transepithelial electrical resistance and histological analysis were also performed on reconstituted human vaginal epithelium to assess tissue integrity.RESULTS:The effect of spermidine and spermidinesupramolecular complexes was first tested in skin fi-broblasts.Spermidine displayed a reverse dose-related mode of activity with mmol/L growth inhibition,whereas 30%stimulation over basal levels was detected at mol/L and nmol/L levels.Novel spermidine-supramolecular complexes that formed between spermidine and polyanionic polymers,such as HA,alginate,and polymaleate,were then tested at variable spermidine concentrations and a fixed polymer level(0.1%w/v).Spermidine-supramolecular complexes stimulated the cell growth rate throughout the entire concentration range with maximal potency(up to 80%)at sub-mol/L levels.Similar results were obtained with spermidine-(-cyclodextrin),another type of spermidine-supramolecular complex.Moreover,the increased expression of Ki-67 in the reconstituted human vaginal epithelium exposed to spermidine-HA 50 showed that the mode of action behind the spermidine-supramolecular complexes was increased cell proliferation.Functional and morphological assessments of reconstituted human vaginal epithelium integrity did not show significant alterations after exposure to spermidine-HA,thus supporting its safety.CONCLUSION:Spermidine found in spermidine-supramolecular complexes displayed potentiated regenerative effects.Safety data on reconstituted human vaginal epithelium suggested that assessing spermidinesupramolecular complex efficacy in atrophic disorders is justified.
基金
Supported by Grants from the Italian Ministry of Education