期刊文献+

单晶金刚石刀具后刀面沟槽磨损的石墨化生成过程分析(英文) 被引量:1

Mechanism analyses of groove wear on flank face of diamond tool from perspective of graphitization
下载PDF
导出
摘要 单晶金刚石刀具切削单晶硅时后刀面会发生剧烈沟槽磨损,严重影响零件加工质量和刀具寿命。为了从金刚石石墨化转变角度揭示沟槽磨损生长扩展机制,建立了金刚石刀具后刀面具有初始沟槽的分子动力学模型,模拟了切削单晶硅时初始沟槽处的工件材料流动行为与金刚石刀具晶体结构变化情况。结果表明,初始沟槽的存在改变了工件材料的流动状态;并且这种材料流动引起了刀具初始沟槽附近温度和能量的变化,温度升高了8%,势能提高了1.4%;通过分析金刚石刀具晶体结构发现,初始沟槽处的刀具材料发生了石墨化转变,并通过计算采样点处原子间键角,得到了石墨化转化率随着切削的进行不断升高,并最终趋于恒定的规律,当切削进入到稳定切削阶段时,石墨化转化率约为6%。 The occurrence of the groove wear on the flank face of diamond cutting tool makes a serious impact on the quality of the finish surface of the workpiece.In order to reveal the growth and extension mechanism of the groove wear from the perspective of graphitization,the molecular dynamics(MD)model of diamond cutting tool with initial groove on the flank face is established,and the motion of the workpiece material and the change of crystal structure of the diamond cutting tool are simulated.The results show that the motion of the workpiece material changes for the existence of the initial groove,and the temperature and the energy of the atoms increase in the cutting process,nearly 8%for the temperature and 1.4% for the energy.The analyses of crystal structure and the radial distribution function of the diamond cutting tool show that there is a diamondgraphite transformation on the initial groove.The change of the graphitization conversion with cutting time is studied through bond angle calculation.The graphitization conversion rate increases with cutting time,when the cutting process proceeds to the stable stage,the graphitization conversion rate tends to be stable at nearly 6%.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第2期40-45,共6页 High Power Laser and Particle Beams
基金 supported by Hebei Province Natural Science Foundation of China(E2012203097)
关键词 金刚石刀具 石墨化 沟槽磨损 初始沟槽 分子动力学 diamond tool graphitization groove wear initial groove molecular dynamics
  • 相关文献

参考文献12

  • 1杜凯,李国,童维超,黄燕华,唐永建.单点金刚石超精密车削快点火靶丸微孔精度控制[J].强激光与粒子束,2013,25(12):3225-3229. 被引量:2
  • 2朱衡,刘夏来,黄金勇,鄢定尧,马平.大口径碳化硅反射镜数控抛光工艺[J].强激光与粒子束,2013,25(12):3311-3314. 被引量:3
  • 3W.J. Zong,T. Sun,D. Li,K. Cheng,Y.C. Liang.XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer[J]. International Journal of Machine Tools and Manufacture . 2008 (15)
  • 4M.B. Cai,X.P. Li,M. Rahman.Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear[J]. Wear . 2007 (7)
  • 5F. M. van Bouwelen,J. E. Field,L. M. Brown.Electron microscopy analysis of debris produced during diamond polishing[J]. Philosophical Magazine . 2003 (7)
  • 6T.P Leung,W.B Lee,X.M Lu.Diamond turning of silicon substrates in ductile-regime[J]. Journal of Materials Processing Tech. . 1998 (1)
  • 7Blake P N,Scattergood R O.Ductile-regime machining of germanium and silicon. Journal of the American Ceramic Society . 1990
  • 8Tersoff J.Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,1989(08).
  • 9Tersoff J.New empirical model for the structural properties of silicon,1986.
  • 10Lee, Gun-Do,Wang, C.Z.,Yu, Jaejun,Yoon, Euijoon,Ho, K.M.Heat-Induced Transformation of Nanodiamond into a Tube-Shaped Fullerene: A Molecular Dynamics Simulation. Physical Review Letters;Letters . 2003

二级参考文献21

  • 1牛海燕,张学军.φ124 mm口径碳化硅质非球面镜面数控研抛技术研究[J].光学精密工程,2006,14(4):539-544. 被引量:26
  • 2Key M H, Andersen C, Cowan T, et al. Fast ignition-physics progress in the US fusion energy program and prospects for achieving ignition [-R]. UCRL-WEB-146893, 2002.
  • 3Tanaka K A, Kodama R, Mima K, et al. Basic and integrated studies for fast ignition[J]. Physics of Plasmas, 2003, 10(5):1925-1930.
  • 4Key M H. Status of and prospects for the fast ignition inertial fusion eoneept[J]. Physics of Pla.mas, 2007, 14:055502.
  • 5Hatehett S P, Clark D, Tabak M, et al. Hydrodynamics of conically-guided fast-ignition targets[J]. Fusion Science and Technology, 2006, 49(3) :327-341.
  • 6Nemoto N. Nagai K, ()no Y, et al. Polystyrene based foam materials for cryogenic targets of fast ignition realization experiment (FIREX) [J]. Fusion Science and Technology, 2006, 49:695-700.
  • 7Ito F, Nagai K, Nakai M, et al. Optimization of gelation to prepare hollow foam shell of resorcinol-formalin using a phase-transfer catalyst [J]- Fusion Science and Technology, 2006, 49:663-668.
  • 8Mauldin M P, Greenwood A L, Kittelson M N, et al. Micromachining of fast ignition targets[J]. Fusion Science and Technology, 2006, 49 : 842-845.
  • 9GA. Inertial confinement fusion annual report[-R]. General Atomics. 2009:25-28.
  • 10GA. Inertial confinement fusion annual report[R]. General Atomics. 2005:63- 66.

共引文献4

同被引文献5

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部