期刊文献+

深冷轧制对AISI 310S不锈钢组织和性能的影响 被引量:7

Effect of cryorolling on microstructure and mechanical properties of AISI 310S stainless steel
原文传递
导出
摘要 采用深冷轧制技术对AISI 310S奥氏体不锈钢进行不同变形量的实验,借助OM、SEM、TEM、XRD及微拉伸试验等方法研究了不同变形量下奥氏体不锈钢的组织特性及性能变化规律。结果表明:奥氏体不锈钢在深冷轧制不同变形量下均未发生应变诱发马氏体相变,在变形量为30%时,组织内部出现高密度位错且夹杂少量的形变孪晶,随着变形量增大至70%时,组织内部出现大量形变孪晶,孪晶与位错的交互作用显著加剧;到变形量为90%时,晶粒完全碎化至纳米量级。而且随着变形量的增大,强度指标大幅度上升,屈服强度、抗拉强度分别从原始态的305 MPa、645 MPa增加至1099 MPa、1560 MPa;而伸长率则从40.8%(原始)下降至6.4%(变形量90%),拉伸断口由韧性断裂向准解理断裂转变。 Microstructure and mechanical properties of AISI 310 S steel after cryorolling with different reductions were investigated by means of XRD,SEM,TEM and micro-tensile tests. The results show that the deformation-induced martensite transformation is not found during cryorolling. After 30% deformation,high density dislocations and a small amount of deformation twins are observed. With the increasing of deformation to 70%,a large amount of deformation twins form and the interaction between twins and dislocations is enhanced significantly. After 90% deformation,the grains are refined to nanometer level. With increasing of the deformation,the yield strength and tensile strength of the steel are improved from 305 MPa and 645 MPa( before cryorolling) to 1099 MPa and 1560 MPa( 90%deformation),respectively,but the corresponding elongation is reduced from 40. 8% to 6. 4%. The tensile fracture is changed from typical ductile fracture to brittle cleavage fracture.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第3期112-117,共6页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(50801021) 河南省高等学校青年骨干教师资助项目(2011GGJS-070) 河南省科技创新杰出人才支持计划项目(144200510001)
关键词 奥氏体不锈钢 深冷轧制 微观组织 力学性能 austenitic stainless steel cryorolling microstructure mechanical property
  • 相关文献

参考文献6

二级参考文献79

  • 1刘鹏,薛飞,戴忠华,陈世均,朱文彬,汪小龙,遆文新.轻水堆核电站奥氏体不锈钢铸件的热老化及其老化管理[J].核动力工程,2005,26(S1):93-96. 被引量:23
  • 2惠卫军,董瀚,翁宇庆.42CrMo VNb细晶高强度钢的力学行为[J].材料热处理学报,2005,26(5):57-61. 被引量:7
  • 3王朝辉,康永林,杨宏,王海峰.退火工艺对1100铝箔组织及性能的影响[J].轻金属,2005(12):61-64. 被引量:8
  • 4徐飙,王龙妹,朱京希,王福,徐军,戚国平.节镍型奥氏体不锈钢冷轧断带的影响因素[J].金属热处理,2007,32(6):111-113. 被引量:9
  • 5Valiev R Z. Structure and mechanical properties of ultrafine-grained metals[ J]. Mater Sei Eng A, 1997, 234:59 -66.
  • 6Saito Y, Utsumoniya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Mater, 1999, 47:579 -583.
  • 7Inoue T, Torizuka S, Nagai K. Microstructural Design through M uhi-Directional Deformation [ C]//ISUGS 2001. Fukuoka, Japan:The Iron and Steel Institute of Japan, 2001:85 - 91.
  • 8Horita Z, Fujunami T, Langdon T G. The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties[ J]. Mater Sci Eng A, 2001, 318:34 -41.
  • 9Matsumura Y, Yada H. Evolution of ultrafine-grainer ferrite in hot successive deformation[ J]. ISIJ Int, 1987, 27:492 -496.
  • 10Kaspar R, Distl J S, Pawelski O. Extreme austenite grain refinement due to dynamic recrystallization[ J]. Steel Res, 1988, 59:421 -425.

共引文献73

同被引文献31

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部