期刊文献+

热处理工艺对高速车轮钢显微组织和断裂韧性的影响 被引量:14

Effect of heat-treatment on microstructure and fracture toughness of high-speed railway wheel steel
原文传递
导出
摘要 对含碳量为0.54%的高速车轮钢热处理工艺进行实验研究,得到不同晶粒尺寸和珠光体片间距的显微组织,在室温下对具有不同显微组织的紧凑拉伸(CT)试样进行断裂韧性测试。结果表明,车轮钢的平均晶粒尺寸随奥氏体化温度升高而增加;珠光体片间距随冷却速率增加而减小。车轮钢室温下的断裂模式为解理断裂,断裂韧性主要取决于晶粒尺寸的大小,晶粒尺寸越小,断裂韧性越高。珠光体片间距对断裂韧性有一定影响,粗大的珠光体片间距会降低断裂韧性,并且当晶粒尺寸较小时,珠光体片间距的影响更明显。因此,实际工程中为提高车轮钢断裂韧性,合理的奥氏体化温度是关键,同时需适当增加车轮钢奥氏体化后的冷却速率。 High-speed railway wheel steel with 0. 54% carbon was heat-treated with different austenitizing temperatures and cooling rates to achieve microstructure with various grain diameters and pearlite interlamellar spacings. Compact tension( CT) specimens with different microstructure were tested at room temperature. The results show that the average grain diameter increases with increase austenitizing temperature. The pearlite interlamellar spacing decreases with the increasing of cooling rate. The fracture mode of all the CT specimens at room temperature is cleavage. The fracture toughness of the steel increases with decrease the grain diameter and large interlamellar spacing is harmful to the fracture toughness especially when the grain size is fine. Reasonable austenitizing temperature and continuously cooling rate are important to elevate the fracture toughness of the wheel steel.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第4期150-155,共6页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(51171020 U1234207) 中央高校基本科研业务费专项资金(FRF-TP-12-160A)
关键词 车轮钢 热处理 显微组织 断裂韧性 解理断裂 wheel steel heat treatment microstructure fracture toughness cleavage
  • 相关文献

参考文献17

  • 1任学冲,李胜军,高克玮,宿彦京,江波,陈刚,赵海.热处理工艺对CL50D车轮钢晶粒度的影响[J].金属热处理,2012,37(7):7-12. 被引量:8
  • 2任学冲,李胜军,高克玮,宿彦京,江波,陈刚,赵海.室温下高速车轮钢断裂韧性与冲击韧性的关系[J].中国铁道科学,2012,33(1):93-97. 被引量:8
  • 3王丽英,李伟.ER7车轮钢的K_Q值试验结果与分析[J].物理测试,2010,28(4):33-36. 被引量:4
  • 4任学冲,田建军,王国珍,褚武扬.加载速率对低合金钢缺口断裂行为的影响[J].北京科技大学学报,2004,26(5):533-537. 被引量:3
  • 5G. Z. Wang,J. H. Chen,X. C. Ren.Effects of loading rate on fracture behavior of low-alloy steel with different grain sizes[J]. Metallurgical and Materials Transactions A . 2004 (6)
  • 6J.H. Chen,Q. Wang,G.Z. Wang,Z. Li.Fracture behavior at crack tip — a new framework for cleavage mechanism of steel[J]. Acta Materialia . 2003 (7)
  • 7G.Z. Wang,J.H. Chen,J.G. Wang.On the measurement and physical meaning of the cleavage fracture stress in steel[J]. International Journal of Fracture . 2002 (3)
  • 8Haruo Sakamoto,Kazuo Toyama,Kenji Hirakawa.Fracture toughness of medium-high carbon steel for railroad wheel[J]. Materials Science & Engineering A . 2000 (1)
  • 9D. J. Alexander,I. M. Bernstein.Cleavage fracture in pearlitic eutectoid steel[J]. Metallurgical Transactions A . 1989 (11)
  • 10Y. J. Park,I. M. Bernstein.The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel[J]. Metallurgical Transactions A . 1979 (11)

二级参考文献22

  • 1[1]Curry D A, Milne I, Gates R S. The influence of a high loading rate on the fracture behavior of pressure vessel steel [J]. Mater Sci Eng, 1984, 63:101
  • 2[2]Tosal L, Rodriguez C, Belzunce F J, et al. Comparison of the static and dynamic fracture behaviors of an AE-460structural steel [J]. Eng Fract Mech, 2000, 66:537
  • 3[3]Srinivas M, Kamat S V. Effect of strain rate on fracture toughness of mild steel [J]. Mater Sci Technol, 2001, 17:529
  • 4[4]Ritchie R O, Knott J F, Rice J R. On the relationship between critical tensile stress and fracture toughness in mild steel [J]. J Mech Phys Solids, 1973 2:395
  • 5[5]Lewandowski J J, Thompson A W. Microstructural effects on the cleavage fracture stress of fully pearlitic eutectoid steel [J]. Metall Trans, 1986, 17A(8): 1769
  • 6[6]Bowen P, Knott J F. Size effect on the microscopic cleavage fracture stress σf in martensitic microstructure [J].Metall Trans, 1986, 17A: 231
  • 7[7]Wang G Z, Liu G H, Chen J H. Effects ofprecracked specimen geometry on local cleavage fracture stress σf of low alloy steel [J]. Int J Fract, 2001, 112:183
  • 8[8]Chen J H, Zhu L, Ma H. On the scattering of the local fracture stress Part Ⅱ Micromechanism of fracrture [J]. Act Metall Mater, 1990 38:2527
  • 9[10]Wang G Z, Chen J H, Wang J G. On the measurement and physical meaning of the cleavage fracture stress in steel [J]. IntJ Fract, 2002, 118:211
  • 10[11]Hahn G T. The influence ofmicrostructure on brittle fracture [J]. Metall Trans, 1984, 15A: 947

共引文献17

同被引文献156

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部