期刊文献+

基于振荡器模型的蛇形机器人的步态仿真 被引量:7

Gait Simulation of Snake Robot Based on CPG Method
下载PDF
导出
摘要 自然界中的生物蛇具有多种周期性运动方式如蜿蜒运动、直线运动和侧移运动等,步态的多样性极大的提高了自然蛇对复杂环境的适应性。生物学家通过研究证明脊椎动物的这种节律性运动方式是由中枢神经模式发生器(CPG)控制的。针对蛇形机器人高自由度的机械结构和不同步态的运动特点,利用Hopf振荡器模型的稳态特性建立了蛇形机器人的CPG步态模型.通过ADAMS仿真实现了1种九连杆八关节机器人样机的蜿蜒运动和三维空间内的侧向蜿蜒运动,并讨论了2种步态之间的切换。仿真分析结果证明该CPG模型在实现蛇形机器人2种步态控制上的有效性。 Biological snakes in nature have a variety of periodic motion patterns such as serpentine motion,linear motion and lateral motion.Gaits diversity has greatly improved the adaptability of natural snakes to complex environment.Biologists has proved that such rhythmic movements of vertebrate animals are generated by CPG(the central neural pattern generator).Special mechanical structure of a snake robot with high degree of freedom and locomotion characteristics of different gaits was considered to bulid a suitale CPG network model.Hopf oscillators were chosen as neuron models of a central pattern generator owing to their stable features.A snake robot prototype consisting of nine links and eight joints was designed to achieve serpentine locomotion in horionzonal plane and sidewinding locomotion in three-dimensional space using a simulation tool of ADAMS.A switching method between the two locomotion gaits was discussed.Simulation results show that the proposed model is effecitive in locomotion control of snake robots.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第6期1374-1380,共7页 Journal of System Simulation
基金 国家自然科学基金资助(61174027) 国家科技支撑计划课题资助(2013BAK03B01)
关键词 蛇形机器人 Hopf振荡器 蜿蜒运动 侧向蜿蜒运动 snake robot Hopf oscillator serpentine locomotion sidewinding locomotion
  • 相关文献

参考文献17

二级参考文献68

  • 1WANG Gang,ZHANG DaiBing,LIN LongXin,XIE HaiBin,HU TianJiang,SHEN LinCheng.CPGs control method using a new oscillator in robotic fish[J].Science China(Technological Sciences),2010,53(11):2914-2919. 被引量:4
  • 2Raibert M, Blankespoor K, Nelson G, et al. BigDog, the roughterrain quadruped robot[C]//Proceedings of the 17th World Congress, The International Federation of Automatic Control. 2008.
  • 3Wooden D, Malchano M, Blankespoor K, et al. Autonomous navigation for BigDog[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 4736-4741.
  • 4Playter R, Buehler M, Raibert M. BigDog[C]//SPIE Defense and Security Symposium. Bellingbam, WA, USA: SPIE, 2006.
  • 5国家高技术研究发展计划(863计划)先进制造技术领域办公审.国家高技术研究发展计划(863计划)先进制造技术领域“高性能四足仿牛机器人”主题项目申请指南[EB/OL].[2010-10-20)[2011-03-05].http://www.863.gov.cn/news/1010/20/1010203749.htm-P20101020590679536226.pdf.
  • 6Kolter J Z, Rodgers M P, Ng A Y. A control architecture for quadruped locomotion over rough terrain[Cl//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008:811-818.
  • 7Pongas D, Mistry M, Schaal S. A robust quadruped walking gait for traversing rough terrain[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 1474-1479.
  • 8Byl K, Tedrake C. Dynamically diverse legged locomotion for rough terrain[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2009: 1607- 1608.
  • 9Doshi E Brunskill E, Shkolnik A, et al. Collision detection in legged locomotion using supervised learning[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 317-322.
  • 10Plagemann C, Mischke S, Prentice S, et al. Learning predictive terrain models for legged robot locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2008: 3545-3552.

共引文献38

同被引文献49

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部