期刊文献+

Ⅰ-Ⅱ复合型多裂纹板的应力强度因子分析 被引量:3

Analyzing Stress Intensity Factors of a Plate with Multiple Mixed-mode Cracks
下载PDF
导出
摘要 利用有限元方法求解多裂纹板的应力强度因子,讨论了板的尺寸、裂纹长度比、裂纹间距比对应力强度因子的影响。通过单裂纹的数值解与解析解的对比,证明了有限元位移外推法求解应力强度因子的有效性。计算结果表明:两侧裂纹长度越小、离中心裂纹越远,对中心裂纹尖端应力强度因子的影响就越小;当板的尺寸W/a>8时可视为无限大平板,忽略板尺寸的影响;当L/b>9或h/b>6时,两侧裂纹对中心裂纹影响很小,可忽略裂纹之间的相互影响而分开考虑。 The paper obtains the stress intensity factors( SIF) of a plate with multiple mixed-mode cracks with the displacement extrapolation method and the finite element method, and studies in detail the effects of some parameters on the SIF,which include the length of rectangular plate,crack length,crack separation ratio.Comparing the simulation results with the analytical solutions,we demonstrate the feasibility of the displacement extrapolation method. The side crack of small size and the large crack separation ratio have little effect on the SIF of a central crack. It can be seen as an infinite plate when the length of rectangular plate is eight times larger than the crack length. The three cracks can be seen as a single crack separately when the horizontal distance L or vertical distance h is six times or nine times larger than the crack length b. The reason is that the interaction among multiple mixed-mode cracks can be ignored when L/b>9 or h/b>6.
出处 《机械科学与技术》 CSCD 北大核心 2015年第5期803-807,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 江苏省普通高校研究生科研创新计划项目(CXZZ12-0170) 中央高校基本科研业务费专项资金资助
关键词 应力强度因子 复合型裂纹 位移外推法 有限元 crack tips displacement extrapolation method finite element method mixed-mode crack stress intensity factors
  • 相关文献

参考文献10

  • 1张伟,吕胜利,姚磊江.含接触的多孔多裂纹结构应力强度因子分析[J].机械科学与技术,2007,26(7):950-952. 被引量:2
  • 2徐凌志,陆山,吕文林.发动机涡轮盘销钉孔损伤容限分析[J].机械科学与技术,1998,17(3):380-382. 被引量:3
  • 3T. Fett.Weight functions for plates with periodical edge cracks[J]. International Journal of Fracture . 1996 (3-4)
  • 4A. Portela,M. H. Aliabadi,D. P. Rooke.Dual boundary element analysis of cracked plates: singularity subtraction technique[J]. International Journal of Fracture . 1992 (1)
  • 5L. S. Chen,J. H. Kuang.A modified linear extrapolation formula for determination of stress intensity factors[J]. International Journal of Fracture . 1992 (1)
  • 6Wang,Yuanhan.Asymmetric crack problems calculated by the boundary collocation method. Engineering Fracture Mechanics . 1991
  • 7Chen Wen-Hwa,Chang Chenq-Shyoung.Analysis of two dimensional fracture problems with multiple cracks under mixed boundary conditions. Engineering Fracture Mechanics . 1989
  • 8Ma, C.-C.,Shen, I.-K.Calculation of stress intensity factors for elliptical cracks in finite bodies by using the boundary weight function method. Journal of Pressure Vessel Technology, Transactions of the ASME . 1999
  • 9F. Delale,F. Erdogan.Line-spring model for surface cracks in a reissner plate. International Journal of Engineering Science . 1981
  • 10H. Liebowitz,E.T. Moyer.Finite element methods in fracture mechanics. Computers and Structures . 1989

二级参考文献9

共引文献3

同被引文献25

  • 1陈莉,王志智,聂学州.一种多裂纹应力强度因子计算的新方法[J].机械强度,2004,26(z1):210-212. 被引量:14
  • 2毛可毅,于朋涛,牟浩蕾,冯振宇.广布疲劳损伤裂纹萌生问题研究[J].机械科学与技术,2015,34(4):653-656. 被引量:3
  • 3闫相桥.双轴载荷作用下源于椭圆孔的分支裂纹的一种边界元分析[J].固体力学学报,2004,25(4):430-434. 被引量:5
  • 4郭俊宏,刘官厅.具有不对称共线裂纹的圆形孔口问题的应力分析[J].内蒙古师范大学学报(自然科学汉文版),2007,36(4):418-422. 被引量:24
  • 5Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity [ M]. Hol- land: Noordhoff Press, 1953: 1-768.
  • 6Wang Y H, Tham L G, Lee P K K, Tsui Y. A boundary collocation method for cracked plates [J]. Computers & Structures, 2003, 81(28): 2521-2630.
  • 7Chen W H, Chang C S. Analysis of two dimensional fracture problems with multiple cracks under mixed boundary conditions [ J ]. Engineering Fracture Mechanics, 1989, 34 (4) : 921- 934.
  • 8Cartwright D J, Rooke D P. Approximate stress intensity factors compounded from known so- lutions[ J]. Engineering Fracture Mechanics, 1974, 6(3) : 563-571.
  • 9Guo Z, Liu Y J, Ma H, Huang S. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements [ J ]. Engineering Analysis With Boundary Elements, 2014, 47: 1-9.
  • 10Singh I V, Mishra B K, Pant M. A modified intrinsic enriched element free Galerkin method for multiple cracks simulation[J]. Materials and Design, 2010, 31(1 ) : 628-632.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部