期刊文献+

基于改进Apriori算法的煤矿物态隐患系统设计与应用 被引量:6

Design and Application of Coal Mine State Hidden Danger System Based on Data Mining
下载PDF
导出
摘要 为了更深入地研究和利用激增的煤炭隐患数据,对某煤矿的隐患及其属性进行了研究、分析与分层,构建了属性的星形全连接模型;并通过数据清洗、概化及连续属性离散化等数据挖掘技术,将大量原始隐患数据转化为适用挖掘的数据。应用经剪枝和连接步的优化改进的Apriori算法,对该煤矿近两年的物态隐患数据记录进行挖掘,得到频繁项集,导出关联规则;最后利用SQL Server 2008数据库和VS2010平台,构建并实现了煤矿物态隐患信息挖掘系统。 For in-depth research and use the increasing coal mine hidden danger data, a coal mine hidden danger and its properties are defined and layered, a star schema whole connection of properties is constructed. Then put a great deal of original data which is not applicable for mining converted to qualified through the data cleaning, generalized and continuous attribute discretization based on data mining technology. Using the improved Apriori algorithm, whose efficiency increased by optimizing of pruning and connection step, frequent itemsets and derive association rules are obtained after mining the hidden danger of state data record over the last two years of the coal mine. Finally design and develop mine hidden danger of state information mining system.
出处 《煤炭技术》 CAS 北大核心 2015年第4期318-320,共3页 Coal Technology
关键词 煤矿 隐患 数据挖掘 APRIORI算法 数字矿山 coal mine hidden danger data mining Apriori algorithm digital mine
  • 相关文献

参考文献3

二级参考文献19

  • 1王美华.数据挖掘领域中的聚类方法[J].南华大学学报(理工版),2004,18(1):58-62. 被引量:11
  • 2李志林.地理空间数据处理的尺度理论[J].地理信息世界,2005,3(2):1-5. 被引量:31
  • 3朱意霞,姚力文,黄水源,黄龙军.基于排序矩阵和树的关联规则挖掘算法[J].计算机科学,2006,33(7):196-198. 被引量:7
  • 4章志明,黄龙军,余敏.一种基于矩阵的动态频繁项集挖掘算法[J].计算机工程与应用,2006,42(32):170-172. 被引量:4
  • 5邸凯昌.空间数据挖掘和知识发现的理论与方法[M].武汉:武汉测绘科技大学,1999..
  • 6HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 7Ahmed Esmat Sabry.Spatial data mining model for satellite image ciassifier[D].Kentucky,USA:University of Louisville,2003.
  • 8Songül Albayrak,Fatih Amasyal.Fuzzy C -Means clustering on medical diagnostic systems.International Ⅻ[A].Turkish Symposium on Artificial Intelligence and Neural Networks-TAINN[C].Canakkale,Turkey,2003.
  • 9Wen Lei, Li Minqiang. A new association rules mining algorithms based on directed itemsets graph [C].China:Proceeding of 9th the Int'l Conf RSFDGrc,2003:660-663.
  • 10Dzeroski S,RaedtL D.Multi-relational data mining: The current frontiers[C].Preceding ECML/PKDD,ACM Press,2002.

共引文献28

同被引文献78

  • 1田水承,马云龙,寇猛,于旭,李波.基于灰色关联分析的煤矿险兆事件致因分析[J].煤炭技术,2015,34(3):334-336. 被引量:6
  • 2陈晓云,陈袆,王雷,李荣陆,胡运发.基于分类规则树的频繁模式文本分类[J].软件学报,2006,17(5):1017-1025. 被引量:19
  • 3Agrawal R,Imielinaki T,Swami A.Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data.Washington D C,USA:ACM Press,1993:207-216.
  • 4Yuan M,Ouyang Y X,Xiong Z.A text categorization method using extended vector space model by frequent term sets[J].Journal of Information Science and Engineering,2013,29(1):99-114.
  • 5Kim H D,Park D H,Lu Y,et al.Enriching text representation with frequent pattern mining for probabilistic topic modeling[J].Proceedings of the American Society for Information Science and Technology,2012,49(1):1-10.
  • 6Malpani K,Pal P R.An efficient algorithms for generating frequent pattern using logical table with AND,OR operation[J].Computer Science and Telecommunications,2013,37(1):24-30.
  • 7Prasad K S N,Ramakrishna S.Frequent pattern mining and current state of the art[J].International Journal of Computer Applications,2011,26(7):33-39.
  • 8Jayanthi B,Duraiswamy K.A novel algorithm for cross level frequent pattern mining in multidatasets[J].International Journal of Computer Applications,2012,37(6):30-35.
  • 9Patro S N,Mishra S,Khuntia P,et al.Construction of FP tree using Huffman coding[J].International Journal of Computer Science Issues,2012,9(3):446-469.
  • 10Sharma Y,Tech M,SATI V M P,et al.Analysis and implementation of FP & Q-FP tree with minimum CPU utilization in association rule mining[J].International Journal of Computing,Communications and Networking,2012,1(1):39-44.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部