期刊文献+

利用最小噪声分数变换的高光谱目标探测方法 被引量:2

Noise Fraction Minimization Based Target Detection Algorithm for Hyper-spectral Imagery
下载PDF
导出
摘要 针对高光谱遥感影像特征维数多、冗余度高,同时观测信号中广泛存在各种噪声成分的问题,该文提出了一种利用特征降维的高光谱遥感影像目标探测方法。方法首先采用最小噪声分数变换算法对高光谱遥感数据进行特征降维,提取观测信号中的少量高信噪比成分组成新的数据立方,进而使用高光谱目标探测算子实现目标探测。通过对真实目标位置已知的HyMap高光谱遥感数据目标探测的实验,证明了该文提出的方法能够降低目标探测的虚警率和探测时间。 In order to address the issues of high feature dimension,the redundancy among the cross-channels,and the computational cost,a method was proposed in this paper to detect the sub-pixel targets from hyper-spectral images based on feature dimension reduction.In this paper,the noise fraction minimization transform is introduced for spectral dimension reduction,which extracted the principal components in accordance with the signal to noise ratio(SNR)and formed the new data cube for subsequent target detection.Experiments on the famous HyMap data set named'Target Detection Self-Test'indicated that proposed approach could reduce the false alarm rate and processing time.
作者 黄蕾 张莉
出处 《遥感信息》 CSCD 北大核心 2015年第3期19-23,共5页 Remote Sensing Information
关键词 高光谱 目标探测 特征降维 最小噪声分数变换 主成分分析 hyper-spectral image target detection dimension reduction noise fraction minimization principal component analysis
  • 相关文献

参考文献2

二级参考文献32

  • 1耿修瑞,张霞,陈正超,张兵,郑兰芬,童庆禧.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报,2004,23(4):299-302. 被引量:26
  • 2闫慧敏,曹明奎,刘纪远,庄大方,郭建坤,刘明亮.基于多时相遥感信息的中国农业种植制度空间格局研究[J].农业工程学报,2005,21(4):85-90. 被引量:69
  • 3童庆禧;张兵;郑兰芬.高光谱遥感--原理、技术与应用[M]{H}北京:高等教育出版社,2006.
  • 4VAIPHASA C. Consideration of smoothing techniques of hyperspectral remote sensing[J].{H}ISPRS Journal of Photogrammetry and Remote Sensing,2006,(02):91-99.
  • 5TORRECILLA E,AYMERICH I F,PONS S. Effect of spectral resolution in hyperpspectral data analysis[J].Geoscience and Remote Sensing Symposium,2007,(28):910-913.
  • 6BACKER S D,PIURICA A,HUYSMANS B. Denoising of multicomponent images using wavelet least-squares estimators[J].{H}IMAGE AND VISION COMPUTING,2008,(07):1038-1051.doi:10.1016/j.imavis.2007.11.003.
  • 7RAKWATIN P,TAKEUCHI W,YASUOKA Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2007,(06):1844-1856.
  • 8ATKINSON I,KAMLALBADI F,JONES D L. Wavelet-based hyperspectral image estimation[A].2003.743-745.
  • 9OTHMAN H,QIAN S E. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2006,(02):397-408.doi:10.1109/TGRS.2005.860982.
  • 10CHEN G Y,QIAN S E. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2011,(03):973-980.

共引文献11

同被引文献48

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部