期刊文献+

纤维搭桥技术在界面微观力学研究中的应用 被引量:2

Applications of Fiber Bridging Technique in Interfacial Micromechanics
原文传递
导出
摘要 界面在纤维增强复合材料中具有非常重要的作用,只有几十纳米到几十个微米的界面区域是复合材料的薄弱区域,严重影响复合材料的力学性能。通过微尺度实验力学研究微观结构与界面微观力学、宏观断裂性能之间的关系,有助于从微观角度解释复合材料界面应力传递和界面脱粘失效机理,从而为实际的纤维补强提供理论指导。显微共聚焦拉曼光谱是首选的界面微观力学研究方法。本文详细介绍了拉曼光谱在纤维搭桥技术中的应用,并重点从搭桥过程中纤维的架桥力、架桥纤维的止裂作用和界面应力传递三个方面综述了裂缝/架桥纤维的交互微力学。 The interface plays a particularly important role in fiber-reinforced composite materials.The interface region with a few nanometers to tens of microns is the weak area in the composite materials and seriously affects the mechanical properties.The mechanisms of the interfacial stress transfer and the interfacial debonding can be investigated by micro-scale experimental mechanical methods which explore the relationships among microstructure,interfacial micromechanics and macroscopic fracture.As a preferred method,micro-Raman spectroscopy has been applied to study the interfacial micromechanics and the fiber bridging technique is also introduced in detail.The bridging stress,the crack propagation and the interfacial stress transfer are mainly discussed and the micromechanics of crack/bridging fiber is finally summarized.
出处 《高分子通报》 CAS CSCD 北大核心 2015年第1期13-18,共6页 Polymer Bulletin
基金 国家科学基金(60975059) 上海市教育委员会创新项目(14ZZ069)
关键词 界面微观力学 拉曼光谱 纤维搭桥技术 Interfacial micromechanics Micro-Raman spectroscopy Bridging fibers
  • 相关文献

参考文献3

二级参考文献30

  • 1Iijima S. Helical microtubules of graphitic carbon[ J]. Naure, 1991, 354(7) : 56 -58.
  • 2Tombler T W, Zhou C W, Alexscyev L, et al. Reverible electromechonical characteristics of carbon nanotubes under probe manipulation[ J]. Nature, 2000, 405: 769.
  • 3Stampfer C, Helbling T, Obergfell D, Schoberle B, Tripp M K, Jungen A, Roth S, Bright V M and Hierold C. Fab- rication of single - walled carbon nanotube - based pressure sensors[J]. Nano Lett., 2006, 6:233 -237.
  • 4Stampfer C, Jungen A, Linderman A, Obergfell D, Roth S and Hierold C. Nano- Electromechanical Displacement Sensing Based on Single - Walled Carbon Nanotubes [ J ]. Nano Lett., 2006, 6 : 1449 - 1453.
  • 5Helbling T, Drittenbass S, Durrer L, Roman C and Hierold C. Ultra Small Single Walled Carbon Nanotube Pussure Sensors[J]. MEMS, 2009, 575 - 578.
  • 6Carmen K M F, Maggie Q H Z, Dong Z and Wen J L. Fabrication of CNT - based MEMS piezoresistive pressure sensors using DEP nanoassembly [ J ]. Proceedings of 2005 5th IEEE Conference on Nanotechnology, 2005, 1:199 - 202.
  • 7Kangwon L, Seung S L, Jung A L, Kwang C L, and Seungmuk J. Carbon nanotube film piezoresistors embedded in polymer membranes [ J]. Appl. Phys. Lett. , 2010, 96:0135111 -0135113.
  • 8Rinzler A G, Hafner J H, Nikolaev P, Nordlander P, Colbert D T, Smalley R E, Lou L, Kim S G, Tom D. Unraveling Nanotubes: Field Emission from an Atomic Wire [ J ]. Science, 1995, 269(5230) : 1550 - 1553.
  • 9De Heer W A, Chatelain A, Ugarte D. A Carbon Nanotube Field - Emission Electron Source [ J ]. Science, 1995, 270 : 1179.
  • 10WaLt A, de Heer, Jean M B, Kai F. Electron field emitters based on carbon nanotube films [ J]. Adv. Mater., 1997, 9(1) : 87 -89.

共引文献63

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部