期刊文献+

基于模糊K近邻的语音情感识别 被引量:10

Speech Emotion Recognition Based on FKNN
下载PDF
导出
摘要 传统的K近邻算法存在误判风险,针对其不足提出了一种基于模糊K近邻的语音情感识别算法,通过引入模糊隶属度的概念,求出不同的特征参数对于不同情感识别的贡献度,并将其与欧式距离加权应用于语音情感识别中,实验验证了算法的有效性. To solve the limitation that the traditional K-nearest neighbor algorithm may divide a sample to a wrong class,the concept of fuzzy class membership function is used to improve the K-nearest neighbor algorithm.The experiment in speech emotion recognition is implemented and the results show the effectiveness of the improved algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第3期59-62,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(61273266)
关键词 语音情感识别 模糊类别隶属度 模糊K近邻 speech emotion recognition fuzzy class membership function FKNN(fuzzy K-Nearest Neighbor)
  • 相关文献

参考文献3

二级参考文献11

  • 1曾明 张汉明 等.葛根及同属植物根的抗内毒素作用比较[J].中国中药杂志,1997,:178-179.
  • 2Shang Wenqian, Qu Youli, Huang Houkuan, et al.Fuzzy knn text classifier based on gini index. Journal of Guangxi Normal University:Natural Science Edition, 2006,24 (4):87-90.
  • 3Rajkuar Bondugula, Ognen Duzlevski,Xu Dong. Profiles and Fuzzy k-nearest neighbor algorithm for protein secondary structure prediction. Asia-Pacific Bioinformatics Conference, 2005:85-94.
  • 4J. M. Keller,M.R.Gray,J. A. Givens. A fuzzy k-nearest neighbor algorithm. IEEE Trans on SMC, 1985,15(4) : 580-585.
  • 5Vapnik V N. Statistical learning theoryEM:. New York Wiley, 1998.
  • 6Christopher J C Burges. A tutorial on support vector machines for pattern recognitionrJ:. Data Mining and Knowledge, 1998,2(2) : 121-167.
  • 7Huang H P, Liu Y H, Fuzzy support vector machines for pattern recognition and data mining [J:. Interna- tional Journal of Fuzzy Systems, 2002,4(3) : 826-835.
  • 8Perez M, Rubin D M, Scott L E, et al. A hybrid fuzzy- SVM classifier, applied to gene expression profiling for automated leukaemia diagnosis EC://Proceedings of the IEEE Conference Israel. Eilat, Israel: IEEE, 2008.
  • 9曾明,张汉明,郑水庆,苏中武.葛属植物根的异黄酮类成分分析[J].第二军医大学学报,1998,19(2):189-190. 被引量:12
  • 10张汉明,曾明,郑水庆,毛士龙,苏中武.中药葛根及同属植物的模式识别研究(Ⅱ)[J].中草药,2001,32(3):253-254. 被引量:13

共引文献7

同被引文献81

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部