期刊文献+

基于特征空间法的旋转多字体文字识别 被引量:3

The Rrecognition of Rotated Multi-font Character Based on Eigen Space
下载PDF
导出
摘要 针对计算机识别旋转多字体文字困难问题,提出基于特征空间法的文字识别方法.首先,提取文字特征,建立文字的特征空间,确定文字的运动轨迹;其次,通过空间距离比较待测文字特征与轨迹的相似度,识别出文字及其对应的旋转角度.最后,分别以单一字体旋转字符以及四种字体字符为例分别进行了实验,发现62个字符中54个字符识别率达100%,旋转角度精度在10o以内的字符达94%.实验表明该方法具有较高识别率. For the problem that it is difficult for computer to recognize rotated multi-font character,a method of character recognition based on the Eigen space approach is proposed.The character features are extracted,the character feature space is established,and then the trajectories of character is determined.The characters and the corresponding rotation angle is identified by comparing similarity of characteristics of the character under test and the trajectory though space distances.Finally,experiments have been performed taking a single font characters and multi-font characters as examples.It is found that54 characters among 62 characters can get 100%recognition rate and the accuracy of rotation angle can get 94%.Experiments indicate that the proposed method has a high recognition rate.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第4期82-85,共4页 Microelectronics & Computer
基金 国家自然科学基金青年项目(61203374) 陕西省自然科学基金国际合作项目(2014KW01-05)
关键词 文字识别 旋转文字 特征空间 character recognition rotated character eigen space
  • 相关文献

参考文献5

二级参考文献25

  • 1雷鸣,张广军.一种新颖的抗旋转快速图像匹配算法[J].光电子.激光,2009,20(3):397-401. 被引量:8
  • 2刘九芬,黄达人,黄继武.图像水印抗几何攻击研究综述[J].电子与信息学报,2004,26(9):1495-1503. 被引量:43
  • 3周治紧,李玉鑑.基于投影归一化的字符特征提取方法[J].计算机工程,2006,32(2):197-199. 被引量:10
  • 4Pei S C,Lin C N.Image Normalization for Pattern Pecognition[J].Image and Vision Computing,1995,13(10):711-723.
  • 5Wood J.Invariant Pattern Recognition:A Review[J].Pattern Recognition,1996,29(1):1-17.
  • 6Ping Dong,Gaiatsanos N P.Affine transformation resistant water marking based on image normalization[C]// Image Processing.[S.l.]:[s.n.],2002.
  • 7Zheng D,Liu Y,Zhao J.A Survey of RST Invariant ImageWatermarking Algorithms[C]//Proceedings of Canadian Conference on Electrical and Computer Engineering(CCECE).[S.l.]:[s.n.],2006:2086-2089.
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004,60(2):91-110.
  • 9Mikolajczyk K, Schmid C. A performance evaluation of local descriptor[J].IEEE Transactions on pattern analysis and machine intelligence,2005,10(27) :1615-1630.
  • 10Bay H, Tuytelarrs T, Van G L. SURF: Speeded up robust features[C]. Proceedings of the ninth European Conference on Computer Vision, 2006(5):404-417.

共引文献81

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部