期刊文献+

轴向变速运动弯曲梁的固有频率分析 被引量:5

ANALYSIS OF THE NATURAL FREQUENCY OF AN AXIALLY MOVING BEAM WITH NON-UNIFORM VELOCITY
原文传递
导出
摘要 基于动力刚度矩阵法对轴向变速运动弯曲梁的固有频率进行分析,根据Hamilton原理,推导轴向变速运动弯曲梁的时域控制方程和边界条件,通过傅里叶变换得到频域控制方程和边界条件,求解频域控制方程,并结合位移边界条件和载荷边界条件,建立轴向变速运动弯曲梁的动力刚度矩阵模型;引入Hermite形式的形函数,建立了轴向变速运动弯曲梁的有限元模型。算例中,通过对比现有文献中的结果、有限元模型结果和动力刚度矩阵法模型结果,验证了该文所建立的力学模型,动力刚度矩阵法比有限元法具有更高的精度和效率,分析了轴向变速运动弯曲梁固有频率随着弯曲梁轴向运动速度、加速度、轴向受力、边界条件的变化规律。 An analysis on the natural frequencies of an axially moving beam with non-uniform velocity was conducted using the dynamic stiffness matrix method. The governing equations and force boundary conditions in the time domain were established via Hamilton's principle, and the governing equation and force boundary conditions in the frequency domain were then developed using the Furious Transformation. A dynamic stiffness matrix model for the beam was created by importing the displacement and force boundary conditions, after computing the governing equation in the frequency domain. The finite element model was created using the Hermite shape function. Then the model was evaluated by comparing results from literature, FEM results, and DSM results. It was concluded that DSM was more accurate and efficient than FEM. The relationships between natural frequency and the axial movement's velocity and acceleration, axial load, and boundary conditions were also summarized.
出处 《工程力学》 EI CSCD 北大核心 2015年第2期37-44,共8页 Engineering Mechanics
基金 国家重点基础研究发展计划(973)项目(613116)
关键词 哈密顿原理 动力刚度矩阵法 有限元法 轴向运动弯曲梁 变速 固有频率 Wittrick-Williams算法 Hamilton's principle dynamic stiffness matrix method finite element method axially moving beam non-union velocity natural frequency Wittrick-Williams algorithm
  • 相关文献

参考文献4

二级参考文献31

  • 1袁驷,叶康生,F.W.Williams,D.Kennedy.杆系结构自由振动精确求解的理论和算法[J].工程力学,2005,22(S1):1-6. 被引量:14
  • 2赵跃宇,康厚军,冯锐,劳文全.曲线梁研究进展[J].力学进展,2006,36(2):170-186. 被引量:41
  • 3Fryba L. Vibration of Solids and Structures Under Moving Loads (3rd Edition) [M]. London: Thomas Telford, 1999.
  • 4Rieker J R,Trethewey M W. Finite element analysis of an elastic beam structure subjected to a moving distributed mass train[J]. Mechanical Systems and Signal Processing, 19 9 9,13 ( 1 ) : 31-51.
  • 5Baeza L, Ouyang H. Vibration of a truss structure ex- cited by a moving oscillator[J]. Journal of Sound and Vibration, 2009,321 : 721-734.
  • 6Wittrick W H, Williams F W. A general algorithm for computing natural frequencies of elastic structure[J]. Quarterly Journal of Mechanics and Applied Math- ematics ,1971,24 : 263-284.
  • 7Williams F W. An algorithm for exact eigenvalue calculations for rotationally periodic structures [J]. International Journal for Numerical Methods in Engineering, 1986,23 : 609-622.
  • 8Yuan S,Ye K S,Williams F W. Second order mode- finding method in dynamic stiffness matrix methods [J]. Journal of Sound and Vibration, 2004, 269: 689-708.
  • 9Williams F W. Review of exact buckling and frequency calculations with optional multi-level substructuring [J]. Computers and Structures, 1993,48 : 547-552.
  • 10Banerjee J R. Dynamic stiffness matrixdevelopment and free vibration analysis of a moving beam[J]. Journal of Sound and Vibration, 2007,303 : 135-143.

共引文献28

同被引文献37

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部