期刊文献+

基于灵敏度的平板结构多类型传感器优化布置 被引量:8

OPTIMAL PLACEMENT OF MULTI-TYPE SENSOR BASED ON SENSITIVITY FOR PLATE STRUCTURES
原文传递
导出
摘要 多类型传感器信息融合的损伤诊断是结构健康监测领域的一个热点方向,并且基于多种类型传感器信息融合的损伤识别技术必然依赖于考虑多传感器信息互补的传感器优化布置技术。因此,该文以灵敏度分析为理论基础,以结构损伤识别为目标,对于监测平板结构的加速度传感器、光纤光栅(FBG)应变传感器以及压电陶瓷(PZT)传感器三种类型传感器的位置与数目进行优化。分别考虑环境噪声、边界效应等因素,用灵敏度计算比较不同类型传感器(包括加速度传感器、FBG应变传感器和PZT传感器)达到相同损伤识别效果所需数目,分析各类型传感器对结构损伤敏感的布置位置,并研究能达到识别结构任意位置一定程度损伤所需多类型传感器总和最小的数目。最后,进行平板结构模型仿真分析,验证该方法有效性和可靠性。 Damage identification based on multi-type sensor data integration have been received more attention in structural health monitoring field. Furthermore, the effect of damage diagnosis based on multi-type sensor data integration depends on the optimal sensor placement for multi-type sensor data integration. Therefore, in the paper, an innovative optimal sensor placement based on sensitivity is proposed for damage identification to determine the number and locations of three kinds of sensors including accelerometers, Fiber Brag Gauges(FBG), and piezoelectric(PZT) sensors on plate-like structure monitoring. With considering the boundary effect and uncertainty caused by environment, the sensitivity-based object function is established to evaluate minimum sensor number of accelerometers, FBG and PZT, respectively, for the equivalent identification solution. Then the optimal locations and number for three kinds of sensors are calculated. Finally, simulations of fixed-supported steel thin plate-like structure are performed to illustrate the effectiveness of optimal sensor placement.
出处 《工程力学》 EI CSCD 北大核心 2015年第4期77-84,111,共9页 Engineering Mechanics
基金 国家自然科学基金项目(51108113) 中央高校基本科研业务费专项资金项目(HEUCFZ1127)
关键词 传感器优化布置 结构损伤识别 结构健康监测 灵敏度 多类型传感器信息 optimal sensor placement structural damage identification structural health monitoring sensitivity multi-type sensor information
  • 相关文献

参考文献5

二级参考文献65

共引文献78

同被引文献74

  • 1罗金玲,何海波.潜射导弹的空化特性研究[J].战术导弹技术,2004(3):14-17. 被引量:15
  • 2黄维平,刘娟,李华军.基于遗传算法的传感器优化配置[J].工程力学,2005,22(1):113-117. 被引量:25
  • 3张阿漫,戴绍仕.流固耦合动力学[M].北京:国防工业出版社.2011.
  • 4Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure[J]. Engineering Structures, 2005, 27: 1488-1497.
  • 5Staszewski W J, Worden K. An overview of optimal sensor location methods for damage detection[C]//Proceedings of SPIE, 2001, 4326: 179-187.
  • 6Kammer D C. Sensor set expansion for modal vibration testing[J]. Mechanical Systems and Signal Processing 2005, 19: 700-713.
  • 7Carne T G, Dohmann C R. A modal test design strategy for modal correlation[C]//Proceedings of 13th International Modal Analysis Conference, 1995: 927-933.
  • 8Schedlinski C, Link M. An approach to optimal pick-up and exciter placement[C]//Proceedings of 14th International Modal Analysis Conference, 1996: 376-382.
  • 9Chung Y T, Moore D. On- orbit sensor placement and system identification of space station with limited instrumentations[C]// Proceedings of 11th International Modal Analysis Conference. NY: Union College Press, 1993: 41-46.
  • 10Kirkpatrick S,Gelatt C, Vecchi M. Optimization by simulated annealing[J]. Science, 1983, 220: 671-680.

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部