期刊文献+

气固鼓泡床的全尺度直接数值模拟 被引量:3

Fully-Resolved DNS of a Gas-solid Bubbling Bed
原文传递
导出
摘要 颗粒全尺度直接数值模拟由于不引入任何相间作用力封闭模型、同时又考虑了颗粒相与流体相之间的四向耦合,因而具有极高的计算精度和准度。本文采用内嵌边界多重直接力算法结合软球碰撞模型对实验室尺度的气固鼓泡流化床装置进行了全尺度直接数值模拟。计算结果真实还原了鼓泡流态化的流动情形,且能有效地捕捉装置内部流场的详细运动情况和涡结构。对流化床内颗粒在传统的离散元模型框架下进行曳力统计发现,平均曳力比全尺度模拟结果小约20%~30%。其具体数值因选取比较的曳力模型和统计网格而异。改进传统曳力模型需考虑颗粒群的非均匀性以及颗粒拟温度。 Particle fully-resolved DNSs are of high precision and high fidelity,as no closed models for interphase interactions and four-way coupling between particle phase and fluid phase are considered in these simulations.Fully-resolved DNS of a laboratory-scale gas-solid bubbling bed was carried out using the multi-direct forcing scheme and immersed boundary method combined with soft-sphere collision model.Calculation results restore the flow pattern of bubbling fluidization and efficiently capture the detailed motions and the vortex structures in the nuidized bed inside.Particle drag statistic under the framework of DEM shows that the DEM-type average drag force is about 20~30%smaller than the DNS-type value.Exact values depend on the drag model and the statistical grid under test.A modification of the traditional drag models should take the heterogeneity of the particle group and the effect of the granular temperature into consideration.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第5期1023-1027,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51390491 No.51390493) 中组部青年拔尖人才项目
关键词 颗粒流 直接数值模拟 内嵌边界方法 气固鼓泡床 曳力 particulate flow DNS immersed boundary method gas-solid bubbling bed drag force
  • 相关文献

参考文献1

二级参考文献14

  • 1GLOWINSKI R, PAN T W, HESLA T 1, et al. A dis- tributed Lagrange multiplier/fictitious domain method for particulate flows [J]. International Journal of Multi- phase Flow, 1999, 25(5) : 755 - 791.
  • 2JOHNSON A A, TEZDUYAR T E. Simulation of muI tiple spheres falling in a liquid-filled tube [J]. Computer Methods in Applied Mechanics, 1996. 134 ( 3/4 ).. 351 - 373.
  • 3MAURY B. A many-body lubrication model [J]. Comptes Rendus de I' Acadmie des Sciences-Series l- Mathematics, 1997, 325(9): 1053- 1058.
  • 4VAN DER HOEF M A, YE M, VAN SINT ANNAL- AND M, et al. Multi-scale modeling of gas-fluidized beds [J]. Advances in Chemical Engineering, 2006, 31: 65 - 149.
  • 5KRIEBITZSCH S H L, VAN DER H()EF M A, KUIPERS J A M. Fully resolved simulation of a gas- fluidized bed: a critical test of DEM models [J]. Chem- ical Engineering Science, 2013, 91 (0) : 1 - 4.
  • 6ARDEKANI A M, RANGEL R H. Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid [J]. Journal of Fluid Mechanics, 2008, 596:437 - 466.
  • 7BREUGEM W P. A combined soft-sphere model colli- sion/immersed boundary method for resolved simula- tions of particulate Flows []C// Proceedings of the ASME 2010 Third Joint US-European Fluids Engineering Sum- mer Meeting. Montreal, Quebec, Canada: E s. n. 1, 2010: 1-5.
  • 8LI X, HUNT M L, COLONIUS T. A contact model for normal immersed collisions between a particle and a wall [J]. Journal of Fluid Mechanics, 2012, 691: 123 - 145.
  • 9LUO K, WANG Z L, Fan J R, et al. Full-scale solu- tions to particle-laden flows: multidirect forcing and im- mersed boundary method F-J3. Physical Review E, 2007, 76(6) : 066709.
  • 10WANG Z L, FAN J R, LUO K. Combined multi-di- rect forcing and immersed boundary method for simula-ting flows with moving particles [J]. International Journal of Multiphase Flow, 2008, 34(3) : 283 - 302.

共引文献5

同被引文献14

  • 1张晓光.CFB提升管内气固两相流动反应特性的大涡模拟[J].热力发电,2013,42(12):55-58. 被引量:1
  • 2Tenneti S, Subramaniam S. Particle-Resolved Direct Nu- merical Simulation for Gas-Solid Flow Model Develop- ment [Jl. Annual Review of Fluid Mechanics, 2014, 46: 199- 230.
  • 3Sundaresan S. Modeling the Hydrodynamics of Multi-phase Flow Reactors: Current Status and Challenges [J]. AIChE Journal, 2000, 46(6): 1102 1105.
  • 4Fox R O. Large-Eddy-Simulation Tools for Multiphase Flows [J]. Annual Review of Fluid Mechanics, 2012, 44: 4~76.
  • 5Capecelatro J, Desjardins O. An Euler Lagrange Strat- egy for Simulating Particle-Laden Flows [J]. Journal of Computational Physics, 2013, 238:1-31.
  • 6Ojha R P, Lemieux P A, Dixon P K, et al. Statistical Mechanics of a Gas-Fluidized Particle [J]. Nature, 2004, 427(6974): 521 523.
  • 7Ojha R P, Abate A R, Durian D J. Statistical Character- ization of the Forces on Spheres in an Upflow of Air [J]. Physical Review E, 2005, 71(1): 016313.
  • 8Miiller C R, Holland D J, Sederman A J, et al. Granular Temperature: Comparison of Magnetic Resonance Mea- surements With Discrete Element Model Simulations[J]. Powder Technology, 2008, 184(2): 241 -253.
  • 9李德波,樊建人,罗坤,岑可法.气固两相流动大规模并行直接数值模拟算法研究进展与展望[J].中国电机工程学报,2013,33(23):107-117. 被引量:10
  • 10陈程,祁海鹰.EMMS曳力模型及其颗粒团模型的构建和检验[J].化工学报,2014,65(6):2003-2012. 被引量:17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部