摘要
2-边连通3-正则图G是上可嵌入的当且仅当G可由图θ_1,θ_2或k_4通过一系列的M-或N-扩充得到(见[Acta Math.Appl.Sin.,Engl.Ser.,1998,14(4):337-346]).本文证明了若2-边连通3-正则图G是非上可嵌入的,则G可由图θ_3或双哑铃图通过一系列的M-或N-扩充得到.
A 2-edge connected 3-regular graph G is up-embeddable if and only if G can be obtained from the graphs θ_1,θ_2 or k_4 by a series of M or N-extensions(see[Acta Math.Appl.Sin.,Engl.Ser.,1998,14(4):337-346]).In this paper,we prove that if a 2-edge connected3-regular graph G is not up-embeddable,then G can be obtained from the graph θ_3 or a double dumb bell graph by a series of M or N-extensions.
出处
《数学进展》
CSCD
北大核心
2015年第1期55-60,共6页
Advances in Mathematics(China)
基金
Supported by NSFC(No.11301171)
Tianyuan Fund for Mathematics(No.11226284)
Hunan Provincial Natural Science Foundation of China(No.13JJ4079,No.14JJ7047)