期刊文献+

一种无条件稳定的结构动力学显式算法 被引量:6

AN UNCONDITIONALLY STABLE EXPLICIT ALGORITHM FOR STRUCTURAL DYNAMICS
下载PDF
导出
摘要 利用离散控制理论,针对结构动力学方程时间积分提出了一种新的无条件稳定的显式算法.新算法采用CR算法的速度和位移递推格式,同时利用Z变换获得算法对应的传递函数,进而根据极点条件推导了递推格式系数的具体表达式.然后,在其系数中引入了一个控制周期延长率的变量s,从而调节新算法的精度.理论分析表明无条件稳定显式新算法具有二阶精度、零振幅衰减率、无超调和自起步特性,且周期延长率可以用变量s控制,而CR算法只是本文新算法的特例.最后,确定了非线性刚度硬化系统的稳定性界限,并给出了使新算法精度达到较高的变量s的区间.算例分析表明,在此变量区间内取值时,新算法的精度要优于纽马克常平均加速度算法和CR算法. This paper proposes an unconditionally stable explicit algorithm for time integration of structural dynamics by utilizing the discrete control theory.New algorithm adopts the recursive formula of velocity and displacement of CR algorithm,and obtains the respective transfer function based on Z transformation.Further,the specific expressions of coefficients of recursive formula are derived according to the pole condition.Then,a variable s in the coefficients to control the period elongation is introduced,which is applied to adjust the accuracy of new algorithm.Theoretical analysis indicate that the new proposed unconditionally stable explicit algorithm possesses the properties of second accuracy,zero amplitude decay,non-overshoot and self-starting,and its period elongation can be controlled by the variable s.Moreover,the CR algorithm is a special case of the proposed algorithm.Finally,the stability limit of nonlinear stiffening system is determined,and variable interval corresponding to the higher accuracy of new algorithm is presented.Numerical examples demonstrate that in this interval of variable s,the accuracy of new algorithm is superior to that of Newmark constant average acceleration and CR algorithm.
出处 《力学学报》 EI CSCD 北大核心 2015年第2期310-319,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(51478086 11332004) 陕西省科技统筹创新工程重点实验室基金(2013SZS02-K02)资助项目~~
关键词 结构动力学显式算法 离散控制理论 算法设计 可控精度 无条件稳定 explicit algorithm for structural dynamics,discrete control theory,algorithm design,controllable accuracy,unconditionally stable
  • 相关文献

参考文献3

二级参考文献70

  • 1钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 2高晖,李光耀,钟志华,张维刚.汽车碰撞计算机仿真中的子循环法分析[J].机械工程学报,2005,41(11):98-101. 被引量:5
  • 3Hulbert GM, Jang I. Automatic time step control algorithms for structural dynamics. Comp Meth Appl Mech Eng, 1995, 126:155~178.
  • 4Kuhl D, Crisfield MA. Energy-conserving and decaying algorithms in nonlinear structural dynamicsv. Int J Numer Meth Enger, 1999, 45:569~599.
  • 5Belyschko Ted, Liu Wing Kam, Moran Brian. Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd. USA, 2000. Chapter 6.
  • 6Hilber HM, Hughes T JR. Collecation dissipation and 'overshoot' for time integration schemes in structural dynamics.Earthquake Engineering and Structural Dynamics, 1978, 6:99~ 118.
  • 7Hulbert GM, Hughes T JR. An error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamics. Earthquake Eng and Struct Dynam, 1987, 15:901~910.
  • 8Bauchau OA, Damilano G, Theron NJ. Numerical integration of non-linear elastic multi-body systems. Int J Num Meth Eng, 1995, 38:2727~2751.
  • 9邵惠萍 蔡承文.结构动力学方程数值积分的三参数算法[J].应用力学学报,1988,5(4):76-81.
  • 10Chung J, Hulbert GM. A time integration algorithm for structural dynamics: with improved numerical dissipation:the generalized-α method. J Appl Mech ASME, 1993, 60:371~375.

共引文献15

同被引文献25

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部