摘要
推广了一类与广义Baouendi-Grushin向量场相联系的Caffarelli-Kohn-Nirenberg不等式.首先借助Chern和Lin的思想,引进了一个函数变换;结合一些基本的不等式和精确估计,建立了一类加权的Hardy-Sobolev不等式;然后证明了这类与广义Baouendi-Grushin向量场相联系的Caffarelli-Kohn-Nirenberg不等式.
This work is devoted to generalizing a class of Caffarelli-Kohn-Nirenberg type inequalities for the generalized Baouendi-Grushin vector fields.Inspired by the idea of Chern and Lin,a function transformation is introduced.Combining some elementary inequalities and accurate estimates,we establish a class of weighted Hardy-Sobolev type inequalities and then prove a class of Caffarelli-Kohn-Nirenberg type inequalities for the generalized Baouedi-Grushin vector fields.
出处
《数学进展》
CSCD
北大核心
2015年第3期411-420,共10页
Advances in Mathematics(China)
基金
Supported by NSFC(No.11201443,No.11101319)
Natural Science Foundation of Zhejiang Province(No.Y6110118)