期刊文献+

改进量子粒子群求解多目标柔性作业车间调度 被引量:5

Improved Quantum-behaved Particle Swarm Optimization for Solving Multi-objective Flexible Job-Shop Scheduling Problems
下载PDF
导出
摘要 柔性作业车间调度问题(FJSP),由于其求解的复杂性,仍然是研究者们的研究热点。对基于不同的缩放系数选择策略的量子粒子群算法(QPSO)进行了比较研究,标准测试函数的仿真结果表明,自适应的缩放系数在单峰问题上优于其他选择策略;而余弦递减系数由于帮助粒子避免了陷入早熟而在多峰问题上表现比较好,故将其应用于求解多目标柔性作业车间调度问题(最大完工时间,最大机器工作时间,全部机器工作时间)。4个经典的仿真实例测试结果表明了算法的有效性和相较于其他算法的优越性。 Due to the complexity of flexible job-shop scheduling problem(FJSP), it is still the hot topic for research. FJSP was given deep insight into with three objectives to be minimized simultaneously: makespan, maximal machine workload and total workload. Quantum-behaved particle swarm optimization(QPSO) with different coefficient selection methods was compared. The benchmark function tests show that QPSO with adaptive coefficient outperforms other selection methods in unimodal functions, while QPSO with cosine coefficient performs better in multi-modal functions. Therefore, QPSO with cosine decreasing coefficient is adopted to solve the multi-objective FJSP, which is a complex multi-modal optimization problem. Simulation results of four representative FJSP examples indicate the effectiveness and efficiency of the proposed method.
作者 田娜 纪志成
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第12期2948-2957,共10页 Journal of System Simulation
基金 江苏省博士后基金(1401004B) 国家高技术研究发展计划项目(2013AA040405)
关键词 量子粒子群算法 自适应系数 余弦系数 多目标柔性作业车间调度 关键路径 quantum-behaved particle swarm optimization adaptive coefficient cosine coefficient multi-objective problem flexible job-shop scheduling problems critical path
  • 相关文献

参考文献22

  • 1Ahmad Nickabadi,Mohammad Mehdi Ebadzadeh,Reza Safabakhsh.A novel particle swarm optimization algorithm with adaptive inertia weight[J]. Applied Soft Computing Journal . 2011 (4)
  • 2Ghasem Moslehi,Mehdi Mahnam.A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search[J]. International Journal of Production Economics . 2010 (1)
  • 3Tsung-Lieh Lin,Shi-Jinn Horng,Tzong-Wann Kao,Yuan-Hsin Chen,Ray-Shine Run,Rong-Jian Chen,Jui-Lin Lai,I-Hong Kuo.An efficient job-shop scheduling algorithm based on particle swarm optimization[J]. Expert Systems With Applications . 2009 (3)
  • 4Guohui Zhang,Xinyu Shao,Peigen Li,Liang Gao.An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[J]. Computers & Industrial Engineering . 2008 (4)
  • 5B.K. Panigrahi,V. Ravikumar Pandi,Sanjoy Das.Adaptive particle swarm optimization approach for static and dynamic economic load dispatch[J]. Energy Conversion and Management . 2008 (6)
  • 6Imed Kacem,Slim Hammadi,Pierre Borne.Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic[J]. Mathematics and Computers in Simulation . 2002 (3)
  • 7Paolo Brandimarte.Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research . 1993 (3)
  • 8Tiente H,,Rémy D,Daniel J, et al.Evaluation of mutation heuristics for the solving of multiobjective flexible job shop by an evolutionary algorithm. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics . 2002
  • 9I. Kacem,S. Hammadi,P. Borne.Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems Man and Cybernetics . 2002
  • 10Kalyanmoy Deb.Multi-Objective Optimization Using Evolutionary Algorithms. . 2001

共引文献44

同被引文献45

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部