期刊文献+

MSHIM机制下轴向偏移控制的设计改进 被引量:2

The design amendment of axial offset control under MSHIM mechanisam
原文传递
导出
摘要 机械补偿控制是一种先进的控制反应堆功率及轴向功率偏移的技术。由于功率控制系统和轴向偏移为两个独立的系统,为了避免不利的核峰值因子,最大限度减少功率和轴向偏移控制系统之间的互相干扰,业界普遍采用功率控制系统具有优先权的策略。基于对该策略的目的及实施方法的研究,提出一种改进方案。基于对安全相关影响、可实施性及性能的分析表明该改进能以极小的代价提高控制系统的时间响应特性,具有较高的实施价值。 Mechanical shim is an advanced technology for reactor power control and axial offset control. Due to two independent control systems,to avoid possible unacceptable nuclear peaking factor and minimize the potential interactions between power control system and axial offset control system,a policy of having the power control system equipped with higher moving priority is popular deployed.Based on research of intention of the policy and control strategy,a refined design is proposed. The analysis in perspective of safety issues and applicability and performance,indicates the refinement brings faster response for the system with minor cost and has high deployment value.
出处 《自动化与仪器仪表》 2016年第1期124-126,共3页 Automation & Instrumentation
关键词 机械补偿控制 棒组 轴向偏移 功率控制 闭锁 轴向峰值因子 仿真 Mechanical Shim Rod cluster control Assembly(RCCA) Axial offset Power control Interlock Axial peaking factors Simulations
  • 相关文献

参考文献6

二级参考文献15

  • 1蔡光明.反应堆一回路可溶硼^(10)B丰度的跟踪计算[J].核科学与工程,2007,27(3):240-245. 被引量:7
  • 2WCAP-8385. Power Distribution Control and Load Following Procedures. Westinghouse Electric Corporation, September, 1974.
  • 3HYG-GW-GL-701 ,Haiyang Units 1&2 Final Safety Report input.
  • 4SNE-STA-CAL-PP-US-Rev. 0, AP1000 INCORE-EXCORE Calibrations.
  • 5BUCHOLZ J A. SCALE: A modular code sys- tem for performing standardized computer analy- ses for licensing evaluation [ R]. USA: Oak Ridge National Laboratory, 1982.
  • 6FRANCESCHINI F, ZHANG B, MAYHUE L, etal. Development of a control rod depletion methodology for the Westinghouse NEXUS sys- tem[J]. Progress in Nuclear Energy, 2013, 68 (7) : 235-242.
  • 7MUHAMMAD F. Effects of high density disper- sion fuel loading on the control rod worth of a low enriched uranium fueled material test re- search reactor[J]. Annals of Nuclear Energy, 2013, 58(8): 19-24.
  • 8World Healthy Organization. Boron in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality [ R]. Geneva: WHO,2003.
  • 9Chang B L,Robbins W A,Wei F,et al. Boron workers in China: exploring work and lifestyle factors related to boron exposure[J]. AAOHN J. , 2006,54 (10) : 435-43.
  • 10United States Environmental Protection Agency. Drinking Water Health Advisory for Boron [R]. Washington: USEPA, 2008.

共引文献12

同被引文献15

  • 1林诚格,郁祖盛.非能动安全先进压水堆核电技术[M].北京:原子能出版社,2008:150-176.
  • 2Advanced light water reactor utility requirements document[R]. Palo Alto, California: Electric Power Research Institute, 1999.
  • 3Westinghouse LLC. Westinghouse AP1000 de- sign control document[R]. Pittsburgh: Westing- house Electric Company LLC, 2012.
  • 4肖增义,杨柱石.用于自给能探测器的反函数放大器[J].核动力工程,1982,3(5):30-35.
  • 5杨有琏,王文滋,孙景海,等.柔性钒自给能堆芯中子探测器[J].核电子学与探测技术,1983,3(2):21-28.
  • 6KANTROWITZ M L. An improved dynamic compensation algorithm for rhodium self-powered neutron detectors[J]. IEEE transactions on Nu- clear Science, 1987, 34(1): 562-566.
  • 7PARK M G, KIM Y H, CHA K H, et al. Ho filtering for dynamic compensation of self-pow- ered neutron detectors: A linear matrix inequality based method[J]. Annals of Nuclear Energy, 1999, 26(18): 1 669-1 682.
  • 8XINGJ P, QING L, WEN B Z, et al. Robust filtering for dynamic compensation of self-pow- ered neutron detectors[J]. Nuclear Engineering and Design, 2014, 280: 122-129.
  • 9XING J P, QING L, NAN W. Dynamic compen- sation of vanadium self-powered neutron detec- tors based on Luenberger form filter[J]. Pro- gress in Nuclear Energy, 2015, 78: 190-195.
  • 10李树成,夏良通.铑自给能探测器延迟响应消除算法研究[J].核电子学与探测技术,2009,29(6):1516-1519. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部