期刊文献+

粒子滤波理论框架及在目标跟踪中的应用 被引量:2

Framework of particle filter and its application in object tracking
原文传递
导出
摘要 重点研究了目标跟踪方法内的基于"目标状态估计、滤波"的跟踪算法,首先介绍了该类算法的理论基础:贝叶斯滤波器和Monte Carlo方法,指出Kalman滤波器的局限性:满足线性系统和高斯分布,进而推导了粒子滤波的理论框架,并就其如何应用于目标跟踪进行了阐述。 This paper focuses on the research of object tracking method based on the target state estimation,filtering tracking algorithm.Firstly,introduces the theoretical basis of this class of algorithms:Bayesian filter and Monte Carlo method,points out the limitations of the Kalman filter:needing to meet linear system and Gauss distribution,and then the framework of particle filter theory is derived,and its application in target tracking is discussed in this paper.
出处 《自动化与仪器仪表》 2016年第3期190-191,193,共3页 Automation & Instrumentation
关键词 贝叶斯滤波 MONTE CARLO方法 KALMAN滤波器 目标跟踪 Bias filter Monte Carlo method Kalman filter target tracking
  • 相关文献

参考文献1

二级参考文献14

  • 1Wang J, Yagi Y. Integrating color and shape-texture features foradaptive real-time object tracking [ J ]. IEEE Transactions onImage Processing, 2008 , 17(2) : 235-240.
  • 2Yilmaz A, Javed 0, Shah M. Object tracking: A survey [ J].Acm Computing Surveys, 2006, 38(4) ;1-45.
  • 3Haritaoglu I,Flickner M. Detection and tracking of shoppinggroups in stores [ C ] //Proceedings of IEEE Conf. Computer Visionand Pattern Recognition. Kauai, Hawaii:IEEE, 2001 :431-438.
  • 4Tu J, Tao H, Huang T. Online updating appearance generativemixture model for meanshift tracking [ J ]. Machine Vision andApplications, 2009, 20(3) :163-173.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2003, 25(2) :564-575.
  • 6Ning J F, Zhang L,Zhang D, et al. Robust object tracking usingjoint color-texture histogram [ J ]. International Journal of PatternRecognition and Artificial Intelligence, 2009 , 23 ( 7 ) : 1245-1263.
  • 7Ahonen T, Hadid A, Pietikainen M. Face description with localbinary patterns : Application to face recognition [ J ]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2006,28(12) :2037-2041.
  • 8MSenpaS T, Pietikainen M. Texture analysis with local binarypatterns [ M ] //Handbook of Pattern Recognition and ComputerVision. USA: World Scientific Pub. Co. Inc, 2005 : 197-216.
  • 9宁纪锋,吴成柯.一种基于纹理模型的Mean Shift目标跟踪算法[J].模式识别与人工智能,2007,20(5):612-618. 被引量:21
  • 10姚红革,郝重阳,雷松则,齐华,齐敏.序列图像中彩色目标跟踪的加权颜色分布方法[J].中国图象图形学报,2009,14(1):99-105. 被引量:7

共引文献5

同被引文献58

引证文献2

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部