期刊文献+

对Hadoop的用电信息大数据计算服务应用分析 被引量:6

Electricity information on Hadoop big data computing services Application Analysis
原文传递
导出
摘要 随着我国社会及科技的进步,计算机和互联网技术被应用于各个领域中,现阶段日常被处理的用电信息的大数据特征已经表现出来,传统的用电信息计算技术已经不能够满足现代我们的需求。目前,基于Hadoop的用电信息大数据的处理和计算架构得到了广泛的认可,其核心由HDFS和MapReduce两部分构成,极大的提高了用电信息大数据计算效率和计算服务质量。基于此,本文首先介绍了Hadoop平台架构,然后分析了基于Hadoop的用电信息大数据的计算,希望能够引起读者的兴趣。 With the progress of society and technology,computer and Internet technology has been used in various fields,the large data characteristics of electricity at the present stage are processed daily information has demonstrated that traditional computing power of information technology is no longer able we meet modern needs. Currently,Hadoop-based information processing and computing power of big data architecture has been widely recognized,its core by the HDFS and MapReduce two parts,which greatly improves the power of information large data computation efficiency and quality of service. Based on this,this paper introduces the Hadoop platform architecture,and then analyzes the computing power of Hadoop-based big data information,hoping to arouse the reader's interest.
出处 《自动化与仪器仪表》 2016年第4期221-222,共2页 Automation & Instrumentation
关键词 HADOOP 用电信息 大数据 计算 Hadoop electricity information large data calculating
  • 相关文献

参考文献9

二级参考文献159

  • 1王媛媛,丁毅,孙媛媛,赵志丹.数据可视化技术的实现方法研究[J].现代电子技术,2007,30(4):71-74. 被引量:34
  • 2李凌燕.OLAP系统中多维数据可视化的实现[J].现代电子技术,2007,30(10):142-145. 被引量:2
  • 3工业和信息化部.《物联网“十二五”发展规划》发布[EB/OL].http://WWW.miit.gov.cn/n11293472/n11293832/n12771663/14473808.html.
  • 4Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters [C]. Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation. USENIX Association Berkeley, CA, USA, 2004.
  • 5Doug Cutting. Apache^TM Hadoop^TM [EB/OL]. [2011-10-19]. http: //hadoop. apache, org.
  • 6JIANG Dawei, CHIN Beng, SHI Ooilei, et al. The perfor mance of MapReduce: An in-depth study [C]. The 36th International Conference on Very Large Data Bases Singapore Proceedings of the VLDB Endowment, 2010: 13-17.
  • 7Karthik Kambatla, Abhinav Pathak, Himabindu Pucha. Towards optimizing hadoop provisioning in the cloud [EB/OL]. [2011-10-19]. http://www, usenix, org/events/hotcloud09/ t ech/full_papers/kambatla, pdf.
  • 8TIAN Chao, ZHOU Haojie, HE Yongqiang, et al. A dynamic mapreduce scheduler for heterogeneous workloads [C]. Proceedings of the Eighth International Conference on Grid and Coope rative Computing. Washington, D C, USA: IEEE Computer Society, 2009:218-224.
  • 9Kamal Ke, Kemafor Anyanwu. Scheduling hadoop jobs to meet deadlines [C]. 2nd IEEE International Conference on Cloud Computing Technology and Science ( CloudCom ), 2010: 388-392.
  • 10Polo J, Carrera D, Becerra Y, et al. Performance-driven task co-scheduling for mapreduce environments [C]. IEEE Network Operations and Management Symposium NOMS. Washington, D C, IEEE, 2010: 373-380.

共引文献889

同被引文献42

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部