摘要
针对有色噪声下一类含有未建模动态和扰动的非线性随机系统,提出一种鲁棒自适应平滑估计算法。该算法通过极小化状态平滑估计误差的方差和相邻时刻残差的协方差,在线辨识状态滤波估计误差和残差的方差,实现对未建模动态和扰动的自适应补偿。仿真结果验证了该算法在解决有色噪声下非线性随机系统的时变时滞与参数联合估计问题中的有效性。
Considering a class of nonlinear stochastic systems with colored noises subject to unmodeled dynamics and disturbances, a robust adaptive smoothing algorithm was proposed. The algorithm can compensate such unmodeled dynamics and/or disturbances through online parameters identification and has strong robustness against unmodeled dynamics and disturbances. The optimal parameters, such as variances of state filtering errors and residuals, are determined by minimizing the variances of state smoothing errors and the covariance of the residuals at two adjacent times. The simulation results show the satisfying adaptive ability to track changes of time delay and parameter of a nonlinear stochastic system with colored noises.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2004年第3期433-438,共6页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金资助项目(60025307
60234010)
"973"国家重点基础研究规划项目(2002CB312200).
关键词
自动控制技术
有色噪声
时滞估计
参数估计
鲁棒滤波
自适应滤波
auto matic control technology
colored noise
time delay estimation
parameter estimation
robust filtering
adaptive filtering