期刊文献+

Connectedness of Cone-Efficient Solution Set for Cone-Quasiconvex Multiobjective Programming in Locally Convex Spaces 被引量:1

Connectedness of Cone-Efficient Solution Set for Cone-Quasiconvex Multiobjective Programming in Locally Convex Spaces
原文传递
导出
摘要 This paper deals with the connectedness of the cone-efficient solution set for vector optimization inlocally convex Hausdorff topological vector spaces.The connectedness of the cone-efficient solution set is provedfor multiobjective programming defined by a continuous cone-quasiconvex mapping on a compact convex set ofalternatives.The generalized saddle theorem plays a key role in the proof. This paper deals with the connectedness of the cone-efficient solution set for vector optimization inlocally convex Hausdorff topological vector spaces.The connectedness of the cone-efficient solution set is provedfor multiobjective programming defined by a continuous cone-quasiconvex mapping on a compact convex set ofalternatives.The generalized saddle theorem plays a key role in the proof.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第2期309-316,共8页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No.70071026)
关键词 Multiobjective programming cone-efficient solution cone-quasiconvex mapping generalized saddle theorem connectedness Multiobjective programming cone-efficient solution cone-quasiconvex mapping generalized saddle theorem connectedness
  • 相关文献

参考文献16

  • 1Benoist, J. Connectedness of the Efficient Set for Strictly Quasiconcave Sets. Journal of Optimization Theory and Applications, 96(2): 627-654 (1998).
  • 2Choo, E.U., Atkins Bicriteria, D.R. Linear Fractional Programming. Journal of Optimization Theory and Applications, 36:203-220 (1982).
  • 3Choo, E.U., Schaible, S., Chewl K.P. Connectedness of the Efficient Set in Three-Criteria Quasiconcave Programming. Cahiers du Centre d'Etudes de Recherche Operationnelle, 27:213-220 (1985).
  • 4Dan-iiclidis, A., Hadjisavvas, N., Schaible, S. Connectedness of the Efficient Set for Three-Objective Quasiconcave Maximization Problems. Journal of Optimization Theory and Applications, 93:517-524 (1997).
  • 5Gong, X.H. Connectedness of Efficient Solution Sets for Set-Valued Maps in Normed Space. Journal of Optimization Theory and Applications, 83(1): 83-96 (1994).
  • 6Helbig, S. On the Connecte-d-ness of the Set of Weakly Efficient Points of a Vector Optimization Problem in Locallv Convex Spaces. Journal of Optimization Theo~:y and Applications, 65(2): 257-270 (1990).
  • 7Hu, Y.D:, Ling, C. Connectedness of Cone Superefficient Point Sets in Locally Convex Topological Vector Spaces. Journal of Optimization Theory and Applications, 107(2): 433-446 (2000).
  • 8Hu, Y.D., Sun, E.J. Connectedness of the Efficient Set in Strictly Quasiconcave Vector Maximization.Journal of Optimization Theory and Applications, 78(3): 613-622 (1993).
  • 9Jameson,G. Ordered Linear Spaces. Springer-Verlag, New York, 1970.
  • 10Luc, D.T. Structure of the efficient point set. Proc. Amer. Math. Soc., 95:433-440 (1985).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部