期刊文献+

三峰映射三倍周期分岔的重正化分析 被引量:1

Renormalization analysis of period-tripling bifurcation in trimodal maps
原文传递
导出
摘要 讨论了三峰映射三倍周期分岔的重正化群方程,并求出其普适函数和标度因子的数值解. The renormalization group equations for a period-tripling bifurcation in trimodal maps are discussed,and the numerical solutions of their universal functions and scaling factors are obtained.
出处 《云南大学学报(自然科学版)》 CAS CSCD 2004年第B07期85-86,90,共3页 Journal of Yunnan University(Natural Sciences Edition)
基金 973"计划资助项目(G2000077308).
关键词 三峰映射 三倍周期分岔 重正化群方程 普适性 标度因子 循环星花积 数值解 trimodal maps period-tripling bifurcation renormalization group equations universality
  • 相关文献

参考文献3

  • 1张艳阳.双峰映射三倍周期分岔的一组重正化群方程及其解[J].云南大学学报(自然科学版),2003,25(2):126-128. 被引量:3
  • 2Mitchell J. Feigenbaum. The universal metric properties of nonlinear transformations[J] 1979,Journal of Statistical Physics(6):669~706
  • 3Mitchell J. Feigenbaum. Quantitative universality for a class of nonlinear transformations[J] 1978,Journal of Statistical Physics(1):25~52

二级参考文献12

  • 1FEIGENBAUM M J. Quantitative universality for a class of nonlinear transformtions[J]. J Stat Phys, 1978, 19 ( 1 ):25.
  • 2FEIGENBAUM M J. The universal metric properties of nonlinear transformations [ J ]. J Stat Phys, 1979, 21(6): 669-706.
  • 3FEIGENBAUM M J. Universal behavior in nonlinear systems[ J ]. Physica, 1983, 7 (1): 16-39.
  • 4ZENG Wan-zhen, HAO Bai-lin, WANG Guang-rui, et al. Scaling property of period-n-tupling sequences in one-dimensional mappings [ J ]. Commun Theor. Phys,1984, 3(3) :283-295.
  • 5HAO Bai-lin. Elementary symbolic dynamics and chaos in dissipative systems[ M]. Singapore: World Scientific,1989.
  • 6DERRIDA B, GERVOIS A, POMEAU Y. Iteration of endomorphisms on the real axis and representation of numbers[J]. Ann Inst Henri Poincaré, Sect. A, 1978, 29(3): 305-356.
  • 7PENG Shou-li, ZHANG Xu-sheng, CAO Ke-Fei. Dual star products and metric universality in symbolic dynamics of three letters[J]. Phys Lett A, 1998, 246(1):87-96.
  • 8CAO Ke-fei, PENG Shou-li. Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps[J]. Phys Rev E, 1999, 60(3):2 745-2760.
  • 9WEELE VAN DER J P, CAPEL H W, KLUIVING R.Period doubling in maps with a maximum of order z[J].Physica, 1987, 145(3): 425-460.
  • 10VEITCH D. Renoxmalization of binxdal maps[J]. Physica D, 1994, 71(3) :269-284.

共引文献2

同被引文献8

  • 1[1]FEIGENBAUM M J.Quantitative universality for a c-lass of nonlinear transformations[J].J Stat Phys,1978,19(1):25-52.
  • 2[2]FEIGENBAUM M J.The universal metric properties of nonlinear transformations[J].J Stat Phys,1979,21(6):669-706.
  • 3[3]FEIGENBAUM M J.Universal behavior in nonlinear systems[J].Physica D,1983,7(1):16-39.
  • 4[4]ZENG Wan-zhen,HAO Bai-lin,WANG Guang-rui,et al.Scaling property of period-n-tupling sequences in one-dimensional mappings[J].Commun Theor Phys,1984,3(3):283-295.
  • 5[7]ZHANG Yan-yang,CAO Ke-fei.Metric universalities a-nd systems of renormalization group equations for bimodal maps[J].Chaos,Solitons and Fractals,2004,21(2):457-471.
  • 6[9]ZHOU Zhong,GAO Wen,LIU Hong-zhang,et al.Symmetries of star products and metric universalities in 1D quadric-modal maps[J].Chaos,Solitons and Fractals,2004,20(3):547-560.
  • 7[10]ZHOU Zhong,CAO Ke-fei.An effective numerical m-ethod of the word-lifting technique in one-dimensional multimodal maps[J].Phys Lett A,2003,310(1):52-59.
  • 8张艳阳.双峰映射三倍周期分岔的一组重正化群方程及其解[J].云南大学学报(自然科学版),2003,25(2):126-128. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部