期刊文献+

一类二阶微分方程解的有界性与渐近性

Study on boundedness and asymptotic behavior of solutions of nonlinear differential equation of second order
下载PDF
导出
摘要 利用微分不等式技巧讨论了二阶微分方程 (a(t)x′)′ +f(t,x ,x′) =0 的解的有界性与渐近性质 ,给出了几个重要定理 ,所得结果包含和推广了前人的一些结果 .其中 a(t) 为定义于R+ =[0 ,+∞ )上的正值连续函数 ,且∫∞01a(t) dt<∞ ,f(t,x ,y) 是定义于R+ The boundedness and asymptotic behavior of solutions of second order nonlinear differential equation(a(t)x′)′+f(t,x,x′)=0is considered by using the integral inequality. Some impot results obtaind generalize and improve some of the previous results a(t) that drmod on R_+=[0,+∞)is posi twe function,and∫~∞_01a(t)dt<∞,f(t,x,y) that ar defined on R_+×R×R ar continous function.
作者 林晓颖
机构地区 哈尔滨学院
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2004年第3期325-328,共4页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 二阶微分方程 有界性 渐近性 微分不等式 integral inequality second order nonlinear differential equation boundedness asymptotic characteristic.
  • 相关文献

参考文献5

  • 1张炳根.一类二阶微分方程解的有界性质[J].数学学报,1964,14(1):128-136.
  • 2YANG E H. Boundedness conditions for solutions of the differential equation (a(t)x') +f(t,x) = 0[J]. Nonlinear Analysis, 1984,8:541-548.
  • 3MENG F W. Boundedness of Solutions of a Class Certain Integrodiffential Equations[J]. Ann.of Diff. Eqs. 1992, 8(1):62-71.
  • 4DANNAN F M. Integral Inequalities of Gronwall-Bellman-Bihari Type and Asymptotic Behavior of Certain Second Order Nonlinear Differential Equations[J]. J. Maths. Anal. Appel 1985,108:151-164.
  • 5CORONIN. J. Differential Equations and Qualitative Theory[M].New York: Dekker, 1980.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部