摘要
对图G(V,E),一正常k-边染色f称为图G(V,E)的k-邻强边染色,当且仅当对任意uv∈E(G),有f[u]≠f[v],其中f[u]={f(uw)|uw∈E(G)},并称x′as(G)=min{k|存在G的一k-ASEC}为G的邻强边色数.研究了Δ(G)≥5的伪-Halin图的邻强边色数,并通过归纳法证明了对Δ(G)=5的伪-Halin图G,有5≤x′as(G)≤6.如果E(G[VΔ])≠ ,则x′as(G)=6.并提出猜想:对|V(G)|≥6的连通图G(V,E)有Δ(G)≤x′as(G)≤Δ(G)+2.其中Δ(G)为G的最大度.
A proper k-edge coloring of graph G(V,E) is said to be a k-adjacent strong edge coloring(k-ASEC) of graph G(V,E) if every uv∈E(G) satisfy f[u]≠f[v],where f[u]={f(uw)|uw∈E(G)},and x′_(as)(G)=min{k|k-ASEC} is called the adjacent strong edge chromatic number.The x′_(as)(G) of Pseudo-Halin graphs with Δ(G)≥5 is studied.Induction on p=|V(G)| is used to prove that for Pseudo-Halin graph G of Δ(G)=5,have 5≤x′_(as)(G)≤6,and x′_(as)(G)=6 if E(G[V_Δ])≠0/,and give out a conjecture:for any connected graph G(V,E)(|V(G)|≥6) have Δ(G)≤x′_(as)(G)≤Δ(G)+2,where Δ(G) is the maximum degree of G.
出处
《兰州交通大学学报》
CAS
2004年第3期8-12,共5页
Journal of Lanzhou Jiaotong University
关键词
邻强边染色
邻强边色数
伪-Halin图
adjacent strong edge coloring
adjacent strong edge chromatic number
pseudo-Halin graphsMR(1991) Subject Classfication:05C15