期刊文献+

伪-Halin图的邻强边染色 被引量:2

On Adjacent Strong Edge Coloring of Pseudo-Halin Graphs with Δ(G)≥5
下载PDF
导出
摘要 对图G(V,E),一正常k-边染色f称为图G(V,E)的k-邻强边染色,当且仅当对任意uv∈E(G),有f[u]≠f[v],其中f[u]={f(uw)|uw∈E(G)},并称x′as(G)=min{k|存在G的一k-ASEC}为G的邻强边色数.研究了Δ(G)≥5的伪-Halin图的邻强边色数,并通过归纳法证明了对Δ(G)=5的伪-Halin图G,有5≤x′as(G)≤6.如果E(G[VΔ])≠ ,则x′as(G)=6.并提出猜想:对|V(G)|≥6的连通图G(V,E)有Δ(G)≤x′as(G)≤Δ(G)+2.其中Δ(G)为G的最大度. A proper k-edge coloring of graph G(V,E) is said to be a k-adjacent strong edge coloring(k-ASEC) of graph G(V,E) if every uv∈E(G) satisfy f[u]≠f[v],where f[u]={f(uw)|uw∈E(G)},and x′_(as)(G)=min{k|k-ASEC} is called the adjacent strong edge chromatic number.The x′_(as)(G) of Pseudo-Halin graphs with Δ(G)≥5 is studied.Induction on p=|V(G)| is used to prove that for Pseudo-Halin graph G of Δ(G)=5,have 5≤x′_(as)(G)≤6,and x′_(as)(G)=6 if E(G[V_Δ])≠0/,and give out a conjecture:for any connected graph G(V,E)(|V(G)|≥6) have Δ(G)≤x′_(as)(G)≤Δ(G)+2,where Δ(G) is the maximum degree of G.
出处 《兰州交通大学学报》 CAS 2004年第3期8-12,共5页 Journal of Lanzhou Jiaotong University
关键词 邻强边染色 邻强边色数 伪-Halin图 adjacent strong edge coloring adjacent strong edge chromatic number pseudo-Halin graphsMR(1991) Subject Classfication:05C15
  • 相关文献

参考文献1

二级参考文献9

  • 1Halin R. Studies on Minimally n- connected Graph, in:Comb. Math. and its applications[ M ]. (Proc. Conf. Oxrod), London:Academic Press, 1969.
  • 2Kronk H V. Mitchem J. A seven - colour Theorem onthe Sphere[J]. Discrete Math., 1973(5) :253 -260.
  • 3Zhang Zhongfu, Wang Jianfang, Wang Weifan, et al.The Complete Chromatic Number of Some Planar Graphs[J]. Scientia Sinica (Science in China ) , Series A. 1993(4) :395 - 400.
  • 4Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: The Macmillan Press Ltd., 1976.
  • 5Odile Favaron, Hao Li, Schelp R H., Strong edge colorings of graphs[J]. Discrete Mathematics, 1996,159:103- 109.
  • 6Bums A C. Vertex- distinguishing proper edge - colorings[J]. J. of Graph Theory, 1997,22(2):73-82.
  • 7Zhang Zhongfu, Liu Linzhong, Wang Jianfang. On the Adjacent Strong Edge Coloring of Graphs [J]. App.Math. Lett. , Accept to appenr. 2001, (6) :489- 491.
  • 8Duffin R J. Topology of Series- parallel networks[J]. J.Math. Analy. App., 1965,10:303-318.
  • 9Chartrand G. Linda Lesniak - Foster, Graphs and Digraphs [M]. CA. ind. edition Wadsworth Brooks/ Cole, Monterey, 1986.

共引文献3

同被引文献9

  • 1Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings[J].J of Graph Theory,1997,26:73-82.
  • 2Baigan C,Harkat-Benhamdine A,Hao li,etc.,On the vertex-distinguishing proper edge-colring of graphs[J].J.Combin.Theory Ser.1999,B75:288-301.
  • 3alister P N,Bollobas B,Shelp R H.Vertex distinguishing colorings of graphs with[J].Discrete Math.2002,252,17-29.
  • 4Zhang Z F,Liu L Z,Wang J F.Adjacent strong edge coloring of graphs[J].Applied Math Letters,2002,(15):623-626.
  • 5Bandy J A,Murty U S R.Graph theory with applions[M].New Yrk:Macmillan Press Ltd,1976.
  • 6Hansen P,Marcotte O.Graph coloring and applocations[M].AMS Prouidece,Rhode Island USA,1999.
  • 7刘林忠.若干平面图的邻强边染色[J].兰州铁道学院学报,1999,18(1):131-134. 被引量:5
  • 8刘林忠,焦永兰,张忠辅,王建方.△(G)=3的外平面图的邻强边染色[J].经济数学,2001,18(2):68-71. 被引量:6
  • 9王淑栋,李崇明,许进,庞善臣.若干图类的邻强边染色[J].数学研究,2002,35(4):412-417. 被引量:7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部