期刊文献+

HOMOGENIZATION OF INCOMPRESSIBLE EULER EQUATIONS

原文传递
导出
摘要 In this paper, we perform a nonlinear multiscale analysis for incompressible Euler equations with rapidly oscillating initial data. The initial condition for velocity field is assumed to have two scales. The fast scale velocity component is periodic and is of order one.One of the important questions is how the two-scale velocity structure propagates in time and whether nonlinear interaction will generate more scales dynamically. By using a Lagrangian framework to describe the propagation of small scale solution, we show that the two-scale structure is preserved dynamically. Moreover, we derive a well-posed homogenized equation for the incompressible Euler equations. Preliminary numerical experiments are presented to demonstrate that the homogenized equation captures the correct averaged solution of the incompressible Euler equation.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2004年第2期220-229,共10页 计算数学(英文)
  • 相关文献

参考文献10

  • 1A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,Volume 5 of Studies in Mathematics and Its Applications, North-Holland Publ., 1978.
  • 2A.J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd ed.,Springer-Verlag, New York, 1993.
  • 3W. E and C.W. Shu, Effective Equations and the Inverse Cascade Theory for Kolmogorov Flows,Phy.s Fluids A, 5 (1993), 998-1010.
  • 4M. Germano, U. Pimomelli, P. Moin, and W. Cabot, A Dynamic Subgrid-ScaJe Eddy Viscosity Model, Phys. Fluids A, 3 (1991), 1760-1765.
  • 5W. D. Henshaw, H. O. Kreiss, and L. G. Reyna, Smallest Scale Estimates for the Navier-Stokes Equations for Incompressible Fluids, Arch. Ration. Mech. An., 112 (1990), 21-44.
  • 6T. Y. Hou and X. H. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, J. Comput. Phys., 134 (1997), 169-189.
  • 7T. Y. Hou, D.-P. Yang, K. Wang, Multiscale Analysis for Incompressible Euler Equations, preprint,2004.
  • 8D. W. McLaughlin, G. C. Papanicolaou, and O. Pironneau, Convection of Microstructure and Related Problems, SIAM J. Applied Math., 45 (1985), 780-797.
  • 9A. Novikov and G. Papanicolaou, Eddy Viscosity of Cellular Flows, J. Fluid Mech., 446 (2001),173-198.
  • 10J. Smogorinsky, General Circulation Experiments with the Primitive Equations, Mon. Weather Review, 91 (1963), 99-164.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部