期刊文献+

水库重力测量检测非牛顿引力的实验数据分析新方法

NEW METHOD OF ANALYZING GRAVIMETRY EXPERIMENT DATA IN RESERVOIR PUMPED—STORAGE FOR SEARCHING NON-NEWTONIAN GRA-VITATION
下载PDF
导出
摘要 本文提出水库重力测量检测非牛顿引力的实验数据分析新方法。利用近一天两重力仪的重力差值信号,基于同液面高度变化水体重力信号相等这一具有明显物理意义的准则,建立仪器零漂信号多项式系数矢量的矩阵方程,通过极大似然反演比较严格地计算漂移信号,并从中提取检测信号。实例计算结果表明:(1)当数据充分、漂移多项式阶数取值适当时,该方法完全有效;(2)在现有水库实验的设备和技术条件下,测定万有引力常数G对实验室值的偏离精度可达0.15%,优于矿井实验和先前水库实验的分析结果;若进一步改善水面高度测量,检测精度还可明显提高;(3)Hornberg水库实验重力仪G709在0.4%的精度范围内,未发现G对实验室值的偏离。 In this paper,a new method for analysing data from pumped--storage reservoir gravimetry experimant searching non--Newtonian gravitation is presented, by utilizing gravity difference between two gravimeters during about one day,and being based on the criterion that the moved water body provides equal gravity signals on two same water levels,which is physically objective reality, we establish coefficient matrix equation of drift gravity signal polinomial and solve it with the aid of maxmum likelihood inversion. Thus we can estimate drift gravity signal, hence extract tested signal. Furthermore we apply the method to a model and a practical example,and conclude as follows:(1)when used data is enough and given degree of polynomial is suitable, the new method is completely effective; (2)with the reservoir experiment conditions of modern equipment and technology,the uncertainty of estimated value of Newtonian gravitational constant G relative to its laboratory value is less than 0.15% which is superior to that of mine and earlier analysis of reservoir experiment, when water level will be more precisely measured,the experiment precision will be evidently improved; (3) estimated Newtonian gravitational constant G of the practical example is in agreement with its laboratory value within the 0. 4% uncertainty.
出处 《地壳形变与地震》 CSCD 1993年第4期25-32,共8页 Crustal Deformation and Earthquake
关键词 水库 非牛顿引力 重力勘探 reservoir gravimetry experiment non—Newtonian gravitation data analysis
  • 相关文献

参考文献1

  • 1[]P·R·贝文顿 著,仇维礼,徐根兴,赵恩广等.数据处理和误差分析[M]知识出版社,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部