期刊文献+

耀斑-行星际激波结构与相应地磁扰动结构间关系的分析(Ⅰ) 被引量:1

STRUCTURES OF FLARE-INTERPLANETERY SHOCK WAVES AND GEOMAGNETIC DISTURBANCE
下载PDF
导出
摘要 利用297个耀斑-行星际激波-地磁扰动事件,统计研究了耀斑-行星际激波等离子体结构与相应磁扰结构间的关系,新的发现是:当激波面后的磁场南、北分量不大时,激波等离子体结构决定着相应磁扰的基本结构形态,特别是等离子体热状态与相应磁扰的恢复相关系十分密切.由本文定义的激波能量传输指数——FS指数对相应地磁扰动能给出较好的描述.推论:除磁重联这类能量传输机制外,对于行星际磁场南、北分量较小时,还可能存在以等离子体过程为基础的决定磁扰变化结构的太阳风-磁层能量传输机制,应进一步研究. Based on the 297 flare-interplanetry shock waves and corresponding geomagnetic disturbances, the relation between their structures has been studied. For the interplanetary magnetic fields are basically lain in the ecliptic plane, we found that (1) basic structures of geomagnetic disturbances are mainly determined by plasma stuctu-res in the shock waves, especialy, the closed relation exists in the plasma temperature profile of shock waves and the recovery phase of geomagnetic disturbances; (2) transfer index, FS, is defined in the paper and which can give a good prediction to the structures of geomagnetic disturbances. It may be deduced, besides the reconnec-tion of magnetic fields, that there is a basic energy transfer mechanism associated with plasma processes and controlled geomagnetic disturbance structures in the solar wind-magnetosphere coupling.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 1993年第6期691-698,共8页 Chinese Journal of Geophysics
基金 国家自然科学基金
关键词 耀斑-行星际 激波 地磁扰动 能量 Flare-interplanetery shock wave, Geomagnetic disturbance, Energy transfer index.
  • 相关文献

同被引文献24

  • 1Gosling J T, McComas D J, Phillips J L, et al. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. , 1991, 96(A5): 7831-7839.
  • 2Russell C T, McPherron R L, Burton R K. On the cause of geomagnetic storms. J. Geophys. Res., 1974, 79(7): 1105- 1109, doi: 10. 1029/JA079i007p01105.
  • 3Gonzalez W D, Tsurutani B T. Criteria of interplanetary parameters causing intense magnetic storms (Dst<- 100 nT). Planetary and Space Science, 1987, 35(9): 1101-1109.
  • 4Gonzalez W D, Tsurutani B T, Gonzalez A L C, et al. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979). J. Geophys. Res., 1989, 94(A7): 8835- 8851.
  • 5Echer E, Gonzalez W D. Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence. Geophys. Res. Lett., 2004, 31: L09808, doi: 10. 1029/2003GL019199.
  • 6Fry C D, Dry M, Smith Z, et al. Forecasting solar wind structures and shock arrival times using an ensemble of models. ]. Geophys. Res., 2003, 108(A2): 1070, doi: 10. 1029/2002JA009474.
  • 7Sun W, Dryer M, Fry C D, et al. Real time forecasting of ICME shock arrivals at L1 during the "April Fool's Day" epoch: 28 March 21 April 2001. Ann. Geophys. , 2002b, 20 (7) .-937-945.
  • 8Smith Z, Dryer M, Ort E, et al. Performance of interplanetary shock prediction models: STOA and ISPM. J. Atmos. Solar-Terr. Phys., 2000, 62(14): 1265-1274.
  • 9McKenna-Lawlor S M P, Dryer M, Kartalev M D, et al. Near real-time predictions of the arrival at Earth of flare- related shocks during Solar Cycle 23. J. Geophys. Res. , 2006, 111: Al1103, doi: 10. 1029/2005JA011162.
  • 10Smith Z K, Dryer M, McKenn-Lawlor S M P, et al. Operational validation of HAFv2's predictions of interplanetary shock arrivals at Earth: Declining phase of Solar Cycle 23. J. Geophys. Res., 2009, 114: A05106, doi: 10. 1029/2008JA013836.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部