期刊文献+

分形滤波在高精度海洋重力仪数据处理中的应用研究 被引量:5

Application of Fractal Filtering in Gravitational Signal Processing
下载PDF
导出
摘要 为有效地消除各种外界干扰噪声对高精度海洋重力仪测量值的影响,提高重力异常测量值的精度,在分析基于分形理论的滤波算法基础上,首次将其应用到高精度海洋重力仪系统数据处理中,并与自适应卡尔曼滤波进行对比分析,以实际信号数据与处理后信号数据的均方差作为衡量两种数据处理方法好坏的依据。理论分析和仿真实验表明:分形滤波方法和自适应卡尔曼滤波都能在一定程度上消除干扰噪声对重力异常信号的影响,但在相同背景条件下,分形滤波的性能优于自适应卡尔曼滤波。 The theory of fractal filtering is analyzed and applied to process the data measured by gravimeter in order to effectively alleviate the effect of different noise in high precise gravitational system. The average bias square between the true data and the processed data is used as the index for evaluating the performance of the data processing methods. Theoretical analysis and emulation experiments indicate that both fractal filtering and adaptive Kalman filtering are effective in alleviating the effects of different noise, but the performance of fractal filtering is better than that of adaptive Kalman filtering.
出处 《中国惯性技术学报》 EI CSCD 2004年第3期32-36,共5页 Journal of Chinese Inertial Technology
关键词 分形滤波 重力仪 信号处理 自适应卡尔曼滤波 干扰噪声 惯性导航系统 gravimeter signal processing fractal filtering adaptive Kalman filtering
  • 相关文献

参考文献8

二级参考文献25

  • 1董雁适,程翼宇,钟建毅.基于分形理论的谱峰检测方法研究[J].浙江大学学报(工学版),2001,35(3):254-257. 被引量:4
  • 2王俊,陈逢时,张守宏.一种利用子波变换多尺度分辨特性的信号消噪技术[J].信号处理,1996,12(2):105-109. 被引量:48
  • 3Crownover R M. Introduction to fractals and chaos[M]. USA: Boston, Jones and Barlett Publishers,1995.1~5.
  • 4Halsey T C, Jensen M H, Kadanoff L P,et al. Fractal measures and their singularities : the characterization of strange sets[J]. Physical Review A, 1986,33(2) : 1141~ 1151.
  • 5Jaggard D, Sun X. Fractal surface scattering :a generalized Rayleigh solution[J]. Appl Phs, 1990, 68(11): 5356~ 5462.
  • 6Lo T, Leung H. Fractal characterization of seascattered signals and detection of sea surface targets[J]. IEEE Proc-F Radion and Signal Processing,1993,140(4): 243~249.
  • 7Mamishev A V, Russell B D, Benner C L. Analysis of high impedance faults using fractal techniques[A]. IEEE Power Industry Computer Applications Conference[C]. 1995. 401~416.
  • 8Bak P, Chen K. The physics of fractals[J]. Physica D, 1989,38(1):5~12.
  • 9Giorgilli A, Casati D, Galgani L, et al. An efficient procedure to compute fractal dimesions by boxcounting[J]. Physics Letters A, 19815,115(5):202~206.
  • 10Fox C G. Empirically derived relationships between fractal dimension and power law frequency spectra[J]. Pure and Applied Geophysics, 1989,131(1/2) :1~29.

共引文献27

同被引文献38

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部