期刊文献+

电弧离子镀薄膜中的颗粒尺寸及其影响的扫描电镜观察 被引量:7

SEM analysis of particles and its effects in arc ion plating
下载PDF
导出
摘要 用扫描电镜对比分析了电弧离子镀增加直线磁场过滤对沉积TiN和TiAlN薄膜中颗粒的密度和尺寸的影响。结果表明,TiN薄膜中颗粒的最大直径,从14μm减小到3μm,颗粒密度从109 cm2降低到105 cm2。TiAlN薄膜由于靶材中含有低熔点金属Al,因而发射出更大的颗粒,有的颗粒集团达到20μm,磁场过滤后颗粒尺寸减小,颗粒密度降低到106 cm2。分析了脉冲叠加直流偏压对TiCrZrN复合薄膜相组成的影响。颗粒可使电弧离子镀TiN CrN多层膜的结合力降低,并使针孔产生遗传。使用直线型磁场过滤及脉冲叠加直流偏压不仅使颗粒密度和尺寸显著降低和减小,而且多层化对小颗粒产生了包覆作用。 The effects of line magnetic filtering on the particles density and size in TiN and TiAlN films deposited by using arc ion plating have been examined by SEM. It showed that the maximum diameter and density of particles in TiN film were decreased from 14μm to 3μm and from 10~9/cm^2 to 10~5/cm^2, respectively. The size of maximum particle of TiAlN film in arc ion plating was to up 20μm because metal Al with low melting point was vaporized from TiAl targets. Using line magnetic filtering and with direct adding pulse bias, the size of particles in TiAlN film was decreased remarkably. The particles density of TiAlN film were decreased to 10~6/cm^2. The particles of TiN/CrN multilayer films in arc ion plating reduced the adhesion between film and substrate, and performed the transmissibility of pinholes. The density and maximum size of particles in the films were decreased observably when line magnetic filtering and with pulse and DC bias were applied at same time. Small particles were embedded in multilayer TiN/CrN films.
出处 《电子显微学报》 CAS CSCD 北大核心 2004年第3期252-256,共5页 Journal of Chinese Electron Microscopy Society
基金 中国科学院兰州化学物理研究所固体润滑国家重点实验室资助项目(No 01 03).
关键词 电弧离子镀薄膜 扫描电镜 磁场过滤 颗粒密度 氮化钛薄膜 arc ion plating particles magnetic filtering SEM
  • 相关文献

参考文献16

  • 1Sathrum P, Coll B F. Plasma and deposition enhancement by modified arc evaporation source [ J ]. Surface and Coatings Technology, 1992,50:103-109.
  • 2Falabella S, Sanders D M. Comparison of two filtered cathodic arc sources[J]. J Vac Sci Technol, 1992, A10(2):394.
  • 3Boercker D B, Falabella S, Sanders D M. Plasma transport in a new cathodic arc ion source: theory and experiment [J]. Surface and Coatings Technology, 1992,53:239-242.
  • 4Anders A, Anders S, Brown I. Effect of duct bias on transport of vacuum arc plasma through curved magnetic filters[J]. J Appl Phys, 1994,75(10) :4900-4905.
  • 5Coll B F, Sanders D M. Design of vacuum arc-based sources [J]. Surf Coat Technol, 1996,81:42-51.
  • 6Hasegawa H, Kimura A, Suzuki T. Microhardness and structural analysis of (Ti, Al)N, (TiCr)N, (Ti, Zr)N,and (Ti, V)N films[J]. J Vac Sci,2000,18:1038-1041.
  • 7Vetter J. Vacuum arc coatings for tools: potential and application[J]. Surf Coat Technol,1995,76/77:719-724.
  • 8Anders A. Growth and decay of macroparticles: a feasible approach to clean vacuum arc plasma [ J ]. J Appl Phys 1997,82(8) :3679-3688.
  • 9Baouchi A W, Perry A J. A study of the macroparticle distribution in cathodic arc evaporated TiN films [ J]. Surf Coat Technol, 1991,49:253-257.
  • 10Ravi S, Silva P, Xu S, et al. Nanocrystallites in tetrahedral amorphous carbon films [ J ]. Appl Phys Lett, 1996,69: 491-496.

二级参考文献2

共引文献19

同被引文献80

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部