期刊文献+

Banach空间中一类算子方程解的迭代收敛定理

Convergence Theorems to a Class of Operator Equations for Iteration Process in Banach Spaces
下载PDF
导出
摘要 通过采用强伪压缩算子和正规对偶算子相结合的方法,研究了Banach空间中一类算子方程解的迭代收敛性.与已有结果相比,该证明方法更为简捷. Convergence results to a class of nonlinear operator equations for iteration process in Banach spaces are studied by using the method of combining the strongly pseudo-contraction operator with the normalized duality operator.Being compared with those known ones,the proving method is more succinct.
出处 《河北师范大学学报(自然科学版)》 CAS 2004年第4期344-346,共3页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金资助项目(96302017) 军械工程学院科学研究基金资助项目(2003yjj12)
关键词 BANACH空间 LIPSCHITZ条件 强伪压缩算子 强增生算子 迭代收敛定理 不动点 Lipschitz condition strongly pseudo-contraction operator strongly accretive operator
  • 相关文献

参考文献4

  • 1CHIDUME C E,OSILIKE M O.Nonlinear accretive and pseudo-contractive operator equations in Banach spaces [J].Nonl Anal,1998,31:779-789.
  • 2KATO T.Nonlinear semigroups and evolution equation [J].J Math Soc Japan,1964,19:508-520.
  • 3DEIMLING K.Zeros of accretive operator [J].Manuscripta Math,1974,13:365-374.
  • 4LIU Li-wei.Approximation of fixed points of strictly pseudo-contractive mappings [J].Proc Amer Math Soc,1997,125:1 363-1 366.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部