期刊文献+

密度函数估计的修正SVM法 被引量:1

Modified SVM in the estimation of density function
原文传递
导出
摘要 讨论密度函数的非参数估计问题,提出了一种修正的支持向量机(SupportVectorMachines,简记为SVM)方法,修正SVM法是在SVM方法的基础上进行简单改进而得到的,它是基于概率理论的概率大的事件其对应的样本数目会比概率小的事件的对应的样本数目多一些这一先验性质而产生的,这样估计的函数能更好地近似真正的密度函数.同时,由于密度函数的估计问题是不适定的,文中密度函数估计采用了正则化技术处理这一估计问题,最后通过一模拟实验,表明采用修正SVM法比采用SVM法进行密度函数估计能更好地逼近真实密度函数. A modified Support Vector Machines (Modified SVM) for non-parametric estimation of density function,which is a modified version of Support Vector Machines (SVM) for non-parametric estimation of density function,is discussed.This procedure is based on the prior knowledge that the probability of any event decides the number of samples which indicate the happening of that event in probability theory,specifically,the larger probability of an event,the more number of samples which imply the happening of that event.A better outcome is obtained by Modified SVM than that by SVM in the simulation.What's more,since the problem of the estimation of density function is ill-posed,the regularization method is adopted.
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 2004年第4期284-287,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省教育厅基金资助项目(02ZY011) 云南大学理(工)科校级科研资助项目(2002Q019S2).
关键词 密度函数估计 修正SVM法 支持向量机 正则化 统计学习 样本数目 density estimation Support Vector Machines modified Support Vector Machines regularization statistical learning
  • 相关文献

参考文献6

  • 1[1]VAPNIK V N.Statistical learning theory [M].New York:Wiley,1998.
  • 2[2]AMARI S,WU S.Improving support vector machine classifiers by modifying kernel function[J].Neurocomputing,1999,12:783-789.
  • 3[3]GIROSI F.An equivalence between sparse approximation and support vector machines[J].Neurocomputing,1998,10(6):1455-1480.
  • 4[4]GAO J B,GUNN S R,HARRIS C J.Mean field method for the support vector machine regression[J].Neurocomputing,2003,50:391-405.
  • 5[5]FRANCIS E H T,CAO L J.Modified support vector machines in financial time series forecasting[J].Neurocomputing,2002,48:847-861.
  • 6[6]IVANOV V N.On linear problems which are not well-posed[J].Soviet Math Docl,1962,3(4):981-983.

同被引文献8

  • 1MANGASARIAN O L, MUSICANT D R. Lagrangian support vector machines [ J ]. Machine Learning 2001,1 ( 3 ) : 161-177.
  • 2SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [ J 1. Neural Process Letter, 1999,9 (3) : 293 -300.
  • 3PENG X. TSVR:An efficient Twin Support Vector Machine for regression[J]. Neural Network ,2010,23:365-372.
  • 4VAPNIK V. An overview of statistical learning theory [ J ]. IEEE Trans Neural Networks, 1999,10 (5) :988-999.
  • 5CORTES C, VAPNIK V. Support vector networks [ J ]. Machine Learning, 1995,20 ( 3 ) :273-297.
  • 6FUNG G, MANGASARIAN O L. Proximal support vector machine classifiers, in : D. Lee, et al. ( Eds. ), Proceedings of KDD - 2001 :Knowledge Discovery and Data Mining, San Francisco,CA,Association for Computing Machinery,New York,2001,77- 86.
  • 7ARUN K M, GOPAL M. Least squares twin support vector machines for pattern classification[ J ]. Expert Systems with Appli- cations,2009,36:7 535-7 543.
  • 8NEWMAN D J. UCI Repository of machine learning database [ DB/OL ]. http://www, ics. uci. edu/- mleam/MLRepository. html.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部