期刊文献+

某些非线性方程的双解:孤子和混沌及其意义 被引量:15

Double solutions of some nonlinear equations:soliton and chaos and their meanings
原文传递
导出
摘要 在非线性方程中,孤子和混沌的基本特征是完全不同的.但各种具有孤子解的非线性方程都可以得到混沌.而只有某些具有混沌解的非线性方程有孤子解.两种解的条件是不同的,某些参数是某个常数时得到孤子,而这些参数在一定区域变化时出现分岔-混沌,也许它联系于混沌的控制.双解可能对应于量子理论中的波-粒二象性,联系于非线性波动力学的双重解.某些非线性方程具有孤子和混沌双解,在数学、物理和粒子理论中存在若干新的意义. The fundamental characteristics of soliton and chaos in nonlinear equation are completely different.But all nonlinear equations with a soliton solution may derive chaos.While only some equations with a chaos solution have a soliton solution.The conditions of the two solutions are different.When some parameters are certain constants,the soliton is derived;while these parameters vary in a certain region,the bifurcation-chaos appears.It connects a chaotic control probably.The double solutions correspond possibly to the wave-particle duality in quantum theory,and connect the double solution theory of the nonlinear wave mechanics.Some nonlinear equations possess soliton and chaos,whose new meanings are discussed briefly in mathematics,physics and particle theory.
作者 张一方
机构地区 云南大学物理系
出处 《云南大学学报(自然科学版)》 CAS CSCD 2004年第4期338-341,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 国际协同学科学研究基金资助项目(2003P001).
关键词 非线性方程 孤子 混沌 数学物理 量子理论 差分方程 nonlinear equation soliton chaos mathematics-physics
  • 相关文献

参考文献14

  • 1[1]SCOTT A C,CHU FYF,MCLAUGHLING D W.The soliton: new concept in applied science[J].Proc of IEEE,1973,61(10):1443-1483.
  • 2[3]ABDULLAEV F K.Dynamical chaos of solitons and nonlinear periodic waves[J].Phys Rep,1989,179(1):1-78.
  • 3[4]ZAIKO Y N.Transition to dynamical chaos in systems described by the KdV equation[J].Sov Tech Phys Lett,1992,18(12):787-788.
  • 4[5]FILATRELLA G,ROTOLI G,SALERNO M.Suppression of chaos in the perturbed sine-Gordon system by weak periodic signals[J].Phys Lett,1993,A178(1-2):81-84.
  • 5[6]POPP S,STILLER O,ARANSON I.Localized hole solutions and spatiotemporal chaos in the 1D complex Ginzburg-Landau equation[J].Phys Rev Lett,1993,70(25):3880-3883.
  • 6[7]WERBOS P J.Chaotic solitons in conservative systems:an they exist?[J].Chaos Soliton Fractals,1993,3(3):321-326.
  • 7[8]JACKIW R,REBBI C.Solitons with fermion number 1/2[J].Phys Rev,1976,D13(12):3398-3409.
  • 8[9]JACKIW R.SCHRIEFFER J R.Solitons with fermion number 1/2 in condensed matter and relativistic field theories[J].Nucl Phys,1981,B190(2):253-265.
  • 9[10]GROSSE H.New solitons connected to the Dirac equation[J].Phys Rep,1986,134(5-6):297-304.
  • 10[11]HEISENBERG W.Quantum theory of field and elementary particles[J].Rev Mod Phys,1957,29(3):269-278.

同被引文献235

引证文献15

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部