期刊文献+

复杂地形对计算地表太阳短波辐射的影响 被引量:26

The Effects of Complex Terrain on the Computed Surface Solar Short-Wave Radiation
下载PDF
导出
摘要 首先利用数字高程数据 (DEM)、大气辐射传输模式 6S以及野外观测资料计算了复杂地形 (青藏高原 )上地表入射太阳辐射 ,然后计算不考虑地形产生的地表辐射的计算误差 ,对误差进行归一化后得到相对辐射误差。结果显示 ,相对辐射误差的标准差 (即相对地表辐射计算误差绝对值的统计平均值 )Se 随太阳天顶角的增加呈指数增长 ,随高度标准差的增加几乎呈线性增长 ,随数字高程数据的分辨率 (或卫星资料的分辨率 )降低而降低。利用分步拟合方法拟合了Se 随太阳天顶角、高度标准差和数字高程分辨率的变化。利用拟合方程可以计算任意地形条件下 ,不同分辨率的卫星 (或数字高程 )资料在不同太阳天顶角情况下 ,不考虑地形复杂性产生的平均地表入射太阳辐射的计算误差 ,结果表明 ,使用中分辨率的卫星 (如MODIS)资料计算地表太阳净辐射时 。 Surface incoming solar radiation over complex terrain is calculated by using topographic data from a girded digital elevation model, field measurements, and atmospheric radiation transfer model 6S. The error caused by not taking into account terrain complexity is calculated, and relative radiation error is estimated by standardizing the error. The results show that the standard deviation of the relative radiation error increases exponentially with solar zenith angle, and almost linearly with the standard deviation of height, but decreases when the resolution of the digital elevation model (or resolution of satellite remotely sensed data) decreases. Using a step by step regression method, the regression equation of the standard deviation of relative radiation error is calculated. The regression equation can describe well the change of standard deviation of relative radiation error with solar zenith angle, standard deviation of height, and resolution of digital elevation model. The result demonstrates that it is necessary to consider terrain complexity when using moderate resolution of remotely sensed data.
出处 《大气科学》 CSCD 北大核心 2004年第4期625-633,共9页 Chinese Journal of Atmospheric Sciences
基金 国家重点基础研究发展规划项目G1 9980 40 91 1 国家自然科学基金资助项目40 2 75 0 3 0资助
关键词 数字高程数据 大气辐射 太阳辐射 短波净辐射 卫星资料 地形复杂性 net short-wave radiation middle-resolution satellite data relative radiation standard deviation terrain complexity
  • 相关文献

参考文献13

  • 1[1]Duguay, C. R., Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain, Photogrammetric Engineering and Remote Sensing, 1992, 58, 551~558.
  • 2[2]Dubayah, R., Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data, Water Resour. Res., 1992, 28, 2469~2484.
  • 3[3]Gratton, J. D., P. J. Howarth, and D. J. Marceau, Using Landsat-5 Thematic Mapper and digital elevation data to determine the net radiation field of a mountain glacier, Remote Sens. Environ., 1993, 43, 315~331.
  • 4[4]http://edcdaac.usgs.gov/gtopo30/README.HTML
  • 5[5]Steven, M. D., Standard distributions of clear sky radiance, Quart. J. Roy. Meteor. Soc., 1977, 103, 457~465.
  • 6[6]Temps, R. C., and K. L. Coulsom, Solar radiation incident upon slope of different orientations, Solar Energy, 1977, 19, 179~184.
  • 7[7]Iqbal, M., An Introduction to Solar Radiation, New York: Academic Press, 1983.
  • 8[8]Proy, C., D. Tanreá, and P. Y. Deschamps, Evaluation of topographic effects in remotely sensed data, Remote Sens. Enviro., 1989, 30, 21~32.
  • 9[9]Dozier, J., and J. Frew, Rapid calculation of terrain parameters for radiation modeling from digital elevation data, IEEE Trans. Geosci. Remote Sens., 1990, GE-28, 963~969.
  • 10[10]Wang, J., K. White, and G. J. Robinson, Estimating surface net solar radiation by use of Landsat-5 TM and digital elevation models, Int. J. Remote Sens., 2000, 21, 31~43.

同被引文献288

引证文献26

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部