期刊文献+

计算地球流体力学的回顾、进展及展望 被引量:3

THE COMPUTATIONAL GEOPHYSICAL FLUID DYNAMICS: REVIEW, PROGRESS AND PROSPECT
下载PDF
导出
摘要 简要回顾了计算地球流体力学的发展历史,概括介绍了计算地球流体力学的研究进展及最新发展方向。针对线性发展方程的计算稳定性问题,介绍了判定线性发展方程初值问题的稳定性判别条件:CLF条件。对分析线性偏微分方程差分格式计算稳定性判据的Fourier方法、启发性稳定性分析方法,也做了简要的介绍。同时,重点介绍了判定线性发展方程初边值问题计算稳定性的GKS理论。在非线性发展方程的计算稳定性方面,重点介绍的主要内容包括:非线性发展方程的计算紊乱现象和计算不稳定的原因;克服非线性发展方程计算不稳定的方法;瞬时平方守恒型差分格式的构造;隐式和显式完全平方守恒格式的设计;强迫耗散非线性发展方程的计算稳定性问题。在计算地球流体力学的近期进展方面,重点介绍了非线性发展方程的计算稳定性与初值的关系,强迫耗散非线性发展方程显式准完全平方守恒格式的构造。对计算地球流体力学需要进一步研究的问题,也做了简要介绍。这些研究工作的介绍,无疑对推动计算地球流体力学的研究和大气海洋模式的研制具有一定的指导意义。 The developed history of computational geophysical fluid dynamics is simply reviewed and its research progress and latest developing direction is briefly introduced. For the computational stability of linear evolution equation, the condition of CLF for judging the computational stability of initial value problem is introduced. The Fourier method and heuristic stability theory for the analysis of the computational stability criterion of the difference scheme of linear partial differential equation are also briefly introduced. Furthermore, the GKS theory for judging the initial-boundary value problem of linear evolution equation is emphatically discussed. For the computational stability of nonlinear evolution equation, the contents are: the mechanism of computational disorder and instability, the method for solving instability, the construction of instantaneous square conservation scheme, the design of implicit and explicit complete square conservation scheme and the computational stability of forced dissipative nonlinear evolution equation. In the near future progress of computational geophysical fluid dynamics, the relationship between the computational stability and the initial value of nonlinear evolution equation and the construction of explicit quasi-complete square conservation scheme of forced dissipative nonlinear evolution equation are emphatically presented. A brief discussion is given to the problems that needs further study of computational geophysical fluid dynamics. The presentation of the research has undoubtedly guidance for the study of computational geophysical fluid dynamics and the development of atmospheric and oceanic model.
出处 《地球科学进展》 CAS CSCD 2004年第4期599-604,共6页 Advances in Earth Science
基金 中国科学院知识创新工程重大项目"全球变化背景下未来50年我国西部生态环境演变趋势预测和对策研究"(编号:KZCX1 10 07)资助.
关键词 计算地球流体力学 线性发展方程 非线性发展方程 计算稳定性 完全平方守恒差分 格式 准完全平方守恒差分格式 Computational geophysical fluid dynamics Linear evolution equation Nonlinear evolution equation Computational stability Complete square conservation scheme Quasi-complete square conservation scheme.
  • 相关文献

参考文献8

二级参考文献28

共引文献25

同被引文献27

  • 1陈国谦,杨志峰.对流扩散方程的指数型摄动差分法[J].计算物理,1993,10(2):197-207. 被引量:21
  • 2顾丽珍.求解对流扩散方程的一些高阶差分格式[J].清华大学学报(自然科学版),1996,36(2):9-14. 被引量:2
  • 3George L, Mellor. Users Guide for a Three-Dimensional Primitive Equation Numerical Ocean Model. 2004,
  • 4Enrique, Alvarez, Fanjul. Description of HAMSOM, 2004.
  • 5Changsheng C, Robert C Beardsley, Geoffrey C. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Manual, 2006.
  • 6A Wallcraft. Hybrid Coordinate Ocean Model. User' s Guide, 2003.
  • 7Bleck R, G Halliwell, A Wallcraft, S Carroll, K Kelly. K Rushing. Hybrid Coordinate Ocean Model. User' s Manual. 2002.
  • 8International CLIVAR Project Office, Report of the 6th meeting of the Working Group on Ocean Model Development WCRP Informal Report No. 6/2006.
  • 9张毅锋,邓小刚,毛枚良,陈坚强.一种可压缩流动的高阶加权紧致非线性格式(WCNS)的加速收敛方法[J].计算物理,2007,24(6):698-704. 被引量:3
  • 10Gao Zhi,Yang Guowei. Perturbation finite volume method for convective-diffusion integral equation[J] 2004,Acta Mechanica Sinica(6):580~590

引证文献3

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部