期刊文献+

一类随机递归集的重分形分解

MULTIFRACTAL DECOMPOSITION ON CERTAIN RANDOM RECURSIVE SETS
原文传递
导出
摘要 本文讨论了一类广义的随机递归集的重分形性质,通过将其构造中的子集间的不重叠条件减弱到有限交性质,使得子集间允许适当重叠,同时保证递归集不为空集和其重分形维数计算仍具有明显的表达式. In this paper, we discuss the multifractal decomposition of the random recursive sets by allowing proper overlapping in their constructions; while ensuring they are not trivial, we can still get the normal decomposition formalism.
出处 《系统科学与数学》 CSCD 北大核心 2004年第3期354-361,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10371092) 武汉大学基金资助课题
关键词 随机递归集 重分形分析 有限交性质 HAUSDORFF维数 PACKING维数 拓扑空间 Random recursive sets, FIP, multifractals.
  • 相关文献

参考文献8

  • 1Cawley R and Mauldin R D. Multifractal decomposition of Moran fractals. Adv. in Math., 1992,92: 196-236.
  • 2Falconer K J. The multifractal spectrum of statistically self-similar measures. J. Theor. Prob.,1994, 7: 681-702.
  • 3Guo H and Hu D. The Hausdorff dimension and exact Hausdorff measure of random recursive sets.International J. of Math. and Mathematical Sci., 2002, 31(1): 11-21.
  • 4Falconer K. Fractal Geometry: Mathematical Foundation and Applications. Chichester, John Wiley and Sons, 1990
  • 5Hu D. The necessary and sufficient conditons for various self-similar sets and their dimension.Stoch. Proc. Appl., 2000, 90: 243-262.
  • 6Falconer K and O‘Neil T. Vector-valued multifractal measures. Proc. R. Soc. Lond. A, 1996, 452:1433-1457.
  • 7Arbeiter M and Patzschke N. Random self-similar multifractals. Math. Nschr.,1996,181: 5-42.
  • 8Mauldin R D and Williams S C. Random recursive constructions: asymptotic geometric and topological properties. Trans Amer..Math. Soc., 1986, 295: 325-346.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部