期刊文献+

一类广义Sylvester方程的反对称最小二乘解及其最佳逼近 被引量:6

THE LEAST-SQUARES SKEW-SYMMETRIC SOLUTION AND THE OPTIMAL APPROXIMATION ON A CLASS OF GENERALIZED SYLVESTER EQUATION
原文传递
导出
摘要 本文利用矩阵的奇异值分解(SVD),给出了广义Sylvester矩阵方程AX+YA=C反对称解存在的充分必要条件,导出了其反对称解和反对称最小二乘解的表达式,同时在解集合中得到了对给定矩阵的最佳逼近解. Using the singular value decomposition (SVD) of the matrix A, this paper obtains the necessary and sufficient conditions for the existence of and the expresssions of the skew-symmetric solutions of the generalized Sylvester matrix equation AX + YA = C, and the least-squares skew-symmetric solution of this equation. In addition, in the solution set of the corresponding problems, the expressions of the optimal approximation solutions are derived for the given marices .
出处 《系统科学与数学》 CSCD 北大核心 2004年第3期382-388,共7页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金资助课题
关键词 广义Sylvester方程 最佳逼近解 反对称矩阵 矩阵方程 矩阵范数 最小二乘解 Matrix equation, matrix norm, skew-symmetric matrix, optimal approximation.
  • 相关文献

参考文献8

  • 1Zietak K. The Chebyshev solution of the linear matrix equation AX + YB = C. Numer. Math.,1985, 46: 455-478.
  • 2Chang Xiaowen and Wang Jiasong. The symmetric soluton of the matrix equation AX + YA =C, AXAT + BY BT = C and ( ATXA, BTXB) = (C, D). Linear Algebra Appl., 1993, 179: 171-189.
  • 3Winner H K. Consistency of a pair of generalized Sylvester equation. IEEE Trans. Automat.Contr., 1994, 39: 1014-1017.
  • 4Bo Kagstrom. A perturbation analysis of the generalized Sylvester matrix equation. SIAM J.Matrix Anal. Appl., 1994, 15(4): 1045-1060.
  • 5Barlow J B, Monahemi M M and O'Leary D P. Constrained matrix Sylvester equation. SIAM J.Matrix Anal. Appl., 1992, 13(1): 1-9.
  • 6Tsui C C. A new approach to robust observer design. Internat. J. Control, 1988, 47: 745-751.
  • 7Xu Guiping, Wei Musheng, Zheng Daosheng. On solutions of matrix equation AXB + CYD = F.Linear Algebra Appl., 1998, 279: 93-109.
  • 8谢冬秀,张磊.一类反对称阵反问题的最小二乘解[J].工程数学学报,1993,10(4):25-34. 被引量:79

二级参考文献3

  • 1孙继广.实对称矩阵的两类逆特征值问题[J]计算数学,1988(03).
  • 2孙继广.一类反特征值问题的最小二乘解[J]计算数学,1987(02).
  • 3Per-?ke Wedin. Perturbation theory for pseudo-inverses[J] 1973,BIT(2):217~232

共引文献78

同被引文献45

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部