摘要
Lemarechal,Oustry和Sagastizabal(2000)提出的uv分解理论为解决非光滑函数的高阶展开提供了一种新的途径,并将此理论应用于研究具有有限个约束的非线性规划的精确罚函数.本文将这一研究推广到具有无限约束的一类半无限规划的问题上,并给出了与这类最小化问题的精确罚函数的U-Lagrange函数有关的某些结果.
In this paper, some results on the uv-decomposition of an exact penalty function in NLP, due to Lemarechal, Oustry and Sagastizabal (2000), are extended to a class of semi-infinite minimization problems. Some properties of the uv-decomposition and u-Lagrangian of an exact penalty function of a semi-infinite minimization problem are given.
出处
《运筹学学报》
CSCD
北大核心
2004年第3期29-38,共10页
Operations Research Transactions
基金
WassupportedbytheStateFoundationsofPh.D.UnitsfromtheMinistryofEducation(20020141013)NSFofChina(10001007)ResearchFoundationofDUT(2002-03),3004888No1