期刊文献+

非凸半定规划的增广Lagrangian的微分的计算(英文) 被引量:1

Calculating the Differential of the Augmented Lagrangian for Nonconvex SDP
下载PDF
导出
摘要 迄今为止,还未见出版过有关求解非凸半定规划的算法,但在最近,Chen,et.al(2000)和Sun & Sun(1999)关于非凸半定规划(SDP)的增广Lagrangian的研究是非常有用的,在本文中,我们证明非凸半定规划的增广Lagrangian是可微的,并且给出它的可微表达式。 So far there have been no published results on algorithms for solving nonconvex semidef-inite programming (SDP) problems. Recently, we found that the differential theories developed by Chen, et.al(2000) and Sun & Sun(1999) are very useful in the study of the augmented Lagrange algorithm for solving the nonconvex semidefinite problems. In this note, we prove that the augmented Lagrangian is differentiable and give the formula of the differential of the augmented Lagrangian.
出处 《运筹学学报》 CSCD 北大核心 2004年第3期66-70,共5页 Operations Research Transactions
基金 PartlysupportedbyTheFoundsofYoungScientistsofChina,No.10001007partlysupposedbytheStateFoundationsofPh.DUnits,No.20020141013
关键词 非凸半定规划 增广Lagrangian 可微性 微分方程 OR, nonconvex, semidefinte programming, differentiable, augmented La-grangian
  • 相关文献

参考文献6

  • 1Chen, X, Qi, H and Tseng, P, Analysis of nonsmooth symmetric-matrix functions with applications to semidefinite complementaxity problems, Manuscript, Department of Mathematics,University of Washington, Seattle, Washington, USA, 2000.
  • 2Horn,R A, Johnson,C R , Topics in Matrix Analysis, Combridge University Press, Combridge,1991.
  • 3Sun, D and Sun, J, Semismooth matrix value functions, Manuscript , Dept of Decision Sciences, National University of Singapore, 1999.
  • 4Sun, J, Sun, D and Qi, L, From strong semismoothness of the squared smoothing matrix function to semidefinite complementarity problems, Applied Mathematics Report, AMR00/20,2000.
  • 5Wolkowicz, H, Saigal, R, Vandenberghe L, Handbook of semidefinite programming:theory,algorithms,and applications, Kluwer Academic Publishers, 2000.
  • 6Vandenberghe,L, Boyd,S, Semidefinite programming, SIAM Rev ,38(1996), 49-95.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部