期刊文献+

数据库中的优对关联关系的挖掘

Mining of Association Relations of Excellent Twain in Database
下载PDF
导出
摘要 挖掘关联规则是数据挖掘的一个重要任务之一。一般的关联关系是单向的,但在某些研究与应用中,需要用到更强的关联关系。为此,提出了一种双向的关联关系,并描述了其独特的函数性质。最后,给出了挖掘这种关联关系对的算法。 Discovering association rules is one of the most important task in data mining.Generally speaking the associ-ation relation means one side.However,the stronger association relations are needed in some research and application.So,in this paper,one kind of binary association rules are proposed,and the special properties of this relation in func-tion are characterd.Finally,the algorithm of finding the binary assocition rules are also presented.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第24期177-179,228,共4页 Computer Engineering and Applications
关键词 数据挖掘 关联规则 支持度 置信度 频繁项集 优对 优团 data mining,association rules,support,confidence,frequent itemsets,excellent twain,excellent group
  • 相关文献

参考文献11

  • 1T Fukuda,Y Morimoto,S Morishita. Data mining with Optimized Two-Dimensional Association Rules:Scheme,Algorithms,and Visualization Proceedings[C].In:The ACM SIGMOD International Conference on Management of Data,ACM ,New York, 1996
  • 2Shichao ZHANG.Aggregation and Maintenances for Database Mining[J].Intelligent Data Analysis, 1999;3(6) :475~490
  • 3N Pasquier,Y Bastide,R Taouil et al. Efficient Mining of Association Rules Using Closed Itemset Lattices[J].Information Systems, 1998;24(1 ) :25~45
  • 4D Cheung,S Lee,B Kao. A General Incremental Technique for Maintaining Discovered Association Rules[C].In:The Fifth International Conference on Database Systems for Advanced Applications, Melbourne, Australia, 1997
  • 5D Cheung,J Han,V Ng et al. Maintence of Discovered Association Rules in Large Databases:An Incremental Updating Technique[C].In:The 12th International Conference on Data Engineering,New Orleans,Louisiana, 1996
  • 6R Srikant,R Agrawal. Mining Generalized Association Rules[J].Future Generation Computer Systems, 1997; 13 (2-3): 161 ~ 180
  • 7R Godin,R Missaoui.An Incremental Concept Formation Approach for Learning from Databases[J].Theoretical Computer Science, 1994;133:387~419
  • 8S Brin,R Motwani,J D Ullamn et al.Dynamic Itemset Counting and Implication Rules for Marketbasket Data[C].In:The ACM SIGMOD International on Management of Data,Tucson,Arizona, 1997
  • 9A Savasere ,E Omiecinski ,S Navathe. An Efficient Algorithm for Mining Association Rules in Larges Databases[C].In:The 21th International Conference on Very Large DataBases,Zurich,Switzerland,1995
  • 10H Mannila. Methods and Problems in Data Mining[C].In:The 6th International Conference on Database Theory pp Delphi, Greece,Springer, 1997

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部